A367771 Number of ways to choose a different prime index of each prime index of 2n + 1.
1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 0, 2, 0, 0, 2, 1, 1, 2, 3, 1, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 3, 0, 1, 1, 2, 3, 2, 0, 2, 2, 0, 1, 1, 1, 4, 2, 1, 3, 2, 0, 2, 3, 0, 3, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 1, 5, 0, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4
Offset: 0
Keywords
Examples
The prime indices of prime indices of 427 = 2*213 + 1 are {{1,1},{1,2,2}}, with four ways to choose (1,2), so a(213) = 4. The prime indices of prime indices of 1469 = 2*734 + 1 are {{1,2},{1,2,3}}, with four choices (1,2), (1,3), (2,1), (2,3), so a(734) = 4.
Crossrefs
The "extended" version below includes alternating zeros at even positions.
The extended version for binary indices is A367905.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[Tuples[prix/@prix[2n+1]], UnsameQ@@#&]],{n,0,100}]
Comments