This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367772 #12 Jul 26 2024 11:54:47 %S A367772 0,0,1,23,1105,154941,66072394,88945612865,396990456067403 %N A367772 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way. %C A367772 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A367772 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %F A367772 A367903(n) + A367904(n) + a(n) = A058891(n). %e A367772 Non-isomorphic representatives of the a(3) = 23 set-systems: %e A367772 {{1,2}} %e A367772 {{1,2,3}} %e A367772 {{1},{2,3}} %e A367772 {{1},{1,2,3}} %e A367772 {{1,2},{1,3}} %e A367772 {{1,2},{1,2,3}} %e A367772 {{1},{2,3},{1,2,3}} %e A367772 {{1,2},{1,3},{2,3}} %e A367772 {{1,2},{1,3},{1,2,3}} %t A367772 Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}] %Y A367772 For at least one choice we have A367902. %Y A367772 For no choices we have A367903, no singletons A367769, ranks A367907. %Y A367772 For a unique choice we have A367904, ranks A367908. %Y A367772 These set-systems have ranks A367909. %Y A367772 A000372 counts antichains, covering A006126, nonempty A014466. %Y A367772 A003465 counts covering set-systems, unlabeled A055621. %Y A367772 A058891 counts set-systems, unlabeled A000612. %Y A367772 Cf. A059201, A102896, A133686, A283877, A306445, A323818, A355741, A367770, A367862, A367869, A367901, A367905. %K A367772 nonn,more %O A367772 0,4 %A A367772 _Gus Wiseman_, Dec 12 2023 %E A367772 a(5)-a(8) from _Christian Sievers_, Jul 26 2024