cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367778 a(n) is the sum of the squares of the areas under Motzkin paths of length n.

This page as a plain text file.
%I A367778 #27 May 21 2024 11:30:03
%S A367778 0,1,6,40,198,910,3848,15492,59920,224917,824074,2960828,10466610,
%T A367778 36498195,125801144,429284612,1452174984,4874940295,16254780970,
%U A367778 53873727516,177594715034,582603630260,1902860189328,6190199896600,20064013907288,64815504118695,208739559416878,670345766842528
%N A367778 a(n) is the sum of the squares of the areas under Motzkin paths of length n.
%C A367778 a(n) is the sum of the squares of the areas under Motzkin paths of length n (nonnegative walks beginning and ending in 0, with jumps -1,0,+1).
%H A367778 AJ Bu, <a href="https://arxiv.org/abs/2310.17026">Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers)</a>, arXiv:2310.17026 [math.CO], 2023.
%F A367778 G.f.: (1 - x - w)*(w^2*(1 - 3*x - 7*x^2 + 3*x^3) - w*(1 - x)*(1 - 3*x - 11*x^2 + 3*x^3))/(2*w^3*x)^2 where w is sqrt((1 + x)*(1 - 3*x)).
%F A367778 D-finite with recurrence -(n+2)*(37012171*n -222599339)*a(n) +3*(n+1)*(108071243*n -631482704)*a(n-1) +(-512534971*n^2 +2421530181*n +1780794712)*a(n-2) +3*(-641100693*n^2 +4745437175*n -5322233482)*a(n-3) +(4162359143*n^2 -33175360881*n +59296953526)*a(n-4) +3*(1437180249*n^2 -9681487559*n +8357806732)*a(n-5) +9*(-754462425*n^2 +6932112703*n -14939114852)*a(n-6) -27*(218140823*n -693079002)*(n-5)*a(n-7)=0. - _R. J. Mathar_, Jan 11 2024
%e A367778 a(3) = 6 = 1*2^2 + 2*1^2 because there is 1 Motzkin path of length 3 with area 2 and 2 Motzkin paths of length 3 with area 1.
%p A367778 G:=((x - 1 + sqrt(-(x + 1)*(3*x - 1)))*(3*sqrt(-(x + 1)*(3*x - 1))*x^4 - 9*x^5 - 14*sqrt(-(x + 1)*(3*x - 1))*x^3 + 15*x^4 + 8*sqrt(-(x + 1)*(3*x - 1))*x^2 + 26*x^3 + 4*sqrt(-(x + 1)*(3*x - 1))*x - 4*x^2 - sqrt(-(x + 1)*(3*x - 1)) - 5*x + 1))/( 4*(x + 1)^3*(3*x - 1)^3*x^2):  Gser:=series(G, x=0, 30): seq(coeff(Gser,x,n), n=1..26);
%o A367778 (PARI) seq(n) = {my(w=sqrt((1 + x)*(1 - 3*x) + O(x*x^n))); Vec((1 - x - w)*(w^2*(1 - 3*x - 7*x^2 + 3*x^3) - w*(1 - x)*(1 - 3*x - 11*x^2 + 3*x^3))/(2*w^3*x)^2, -n)} \\ _Andrew Howroyd_, Jan 07 2024
%Y A367778 Cf. A001006, A057585.
%K A367778 nonn
%O A367778 1,3
%A A367778 _AJ Bu_, Nov 29 2023