cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367779 a(n) is the sum of the cubed areas under Motzkin paths of length n.

Original entry on oeis.org

0, 0, 1, 10, 118, 818, 5092, 27564, 137836, 644836, 2870189, 12266918, 50724954, 204046142, 801892081, 3089123960, 11696423536, 43623049688, 160547844283, 583940294930, 2101624362838, 7492542382034, 26484322064854, 92891831844644, 323514376584988, 1119432296516028, 3850521166068067
Offset: 0

Views

Author

AJ Bu, Nov 29 2023

Keywords

Comments

a(n) is the sum of the cubed areas under Motzkin paths of length n (nonnegative walks beginning and ending in 0, with jumps -1, 0, +1).

Crossrefs

Programs

  • Maple
    G:= ((x - 1 + sqrt(-3*x^2 - 2*x + 1))*(27*sqrt(-3*x^2 - 2*x + 1)*x^6 + 27*x^7 - 108*sqrt(-3*x^2 - 2*x + 1)*x^5 - 171*x^6 + 135*sqrt(-3*x^2 - 2*x + 1)*x^4 + 375*x^5 + 46*sqrt(-3*x^2 - 2*x + 1)*x^3 - 173*x^4 + 9*sqrt(-3*x^2 - 2*x + 1)*x^2 - 49*x^3 - 6*sqrt(-3*x^2 - 2*x + 1)*x - 15*x^2 + sqrt(-3*x^2 - 2*x + 1) + 7*x - 1))/( 4*(3*x^2 + 2*x - 1)^4*x^2):
      Gser:=series(G, x=0, 30):
      seq(coeff(Gser, x, n), n=0..26);

Formula

G.f.: ((x-1+sqrt(-3*x^2 - 2*x+1))*(27*sqrt(-3*x^2 - 2*x + 1)*x^6 + 27*x^7 - 108*sqrt(-3*x^2 - 2*x + 1)*x^5 - 171*x^6 + 135*sqrt(-3*x^2 - 2*x + 1)*x^4 + 375*x^5 + 46*sqrt(-3*x^2 - 2*x + 1)*x^3 - 173*x^4 + 9*sqrt(-3*x^2 - 2*x + 1)*x^2 - 49*x^3 - 6*sqrt(-3*x^2 - 2*x + 1)*x - 15*x^2 + sqrt(-3*x^2 - 2*x + 1) + 7*x - 1))/( 4*(3*x^2 + 2*x - 1)^4*x^2).
D-finite with recurrence -(n+2)*(208042818093439115480236359*n^2 +3624614398456581514732421474*n -17721487814464945136538072251)*a(n) -(n+1)*(208042818093439115480236359*n^2 -41719745257135632687267408740*n +158505784032262104018605336605)*a(n-1) +(-13360215714657466655169907343*n^3 +118659841630751948460172231402*n^2 -123756458774685279991682146443*n -283543805031439122184609156016)*a(n-2) +(118036702571591403784149448443*n^3 -1525771475215968386687916047321*n^2 +4755582466160131138387124654521*n -4142597862823901093548746996315)*a(n-3) +(-176751907767445269010514270775*n^3 +2983064124441697753911146724326*n^2 -14709907226642052191037550511297*n +13263795264370017511434242152362)*a(n-4) +(-272197576813729306989090076649*n^3 +1341914897255725751921825738923*n^2 +2457351063573329630789375171733*n -7112280079323183611739056078799)*a(n-5) +3*(140641582500711132344919452197*n^3 -2013691622157844732623667550670*n^2 +6061316376844627496454860983745*n -5394852349759561206535461042300)*a(n-6) +9*(31431304934630931225275881933*n^3 -175191266960061764283712600119*n^2 +116063361456271209040196525891*n +17631740228382449873765632167)*a(n-7) -54*(n-6) *(1909106552786855250861701283*n^2 -11218051836500565448490163661*n +11426761828186879119687838319)*a(n-8)=0. - R. J. Mathar, Mar 30 2024