cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367780 a(n) is the sum of the squares of the area under Dyck paths of length 2*n.

This page as a plain text file.
%I A367780 #23 Jan 11 2024 11:06:15
%S A367780 0,1,20,189,1356,8426,47944,257085,1321036,6574190,31911320,151841906,
%T A367780 710828600,3282862644,14988894992,67769474077,303823057164,
%U A367780 1352059744070,5977826290936,26277396651558,114916296684008,500229317398156,2168403190878960,9364025672275634
%N A367780 a(n) is the sum of the squares of the area under Dyck paths of length 2*n.
%H A367780 AJ Bu, <a href="https://arxiv.org/abs/2310.17026">Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers)</a>, arXiv:2310.17026 [math.CO], 2023.
%F A367780 G.f.: ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2).
%F A367780 D-finite with recurrence -(n+1)*(133*n-262)*a(n) +4*(564*n^2-1229*n+262)*a(n-1) +4*(-2916*n^2+7294*n-2765)*a(n-2) +16*(596*n-553)*(2*n-3)*a(n-3)=0. - _R. J. Mathar_, Jan 11 2024
%p A367780 G:= ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2):  Gser:=series(G, x=0, 41): seq(coeff(Gser, x, 2*n), n=0..19);
%t A367780 G[x_] := ((-1 + Sqrt[-4*x^2 + 1]) * (40*x^4 + 14*Sqrt[-4*x^2 + 1]*x^2 - 14*x^2 - Sqrt[-4*x^2 + 1] + 1)) /  (4*(4*x^2 - 1)^3*x^2); Gser = Series[G[x], {x, 0, 46}]; Table[Coefficient[Gser, x, 2*n], {n, 0, 23}] (* _James C. McMahon_, Dec 10 2023 *)
%Y A367780 Cf. A000108, A008549.
%K A367780 nonn
%O A367780 0,3
%A A367780 _AJ Bu_, Nov 29 2023