A367782 Numbers k such that binomial(2*k,k) mod k is odd.
33, 35, 51, 57, 65, 75, 85, 95, 105, 115, 117, 119, 129, 135, 147, 171, 175, 183, 185, 201, 219, 221, 225, 235, 237, 245, 247, 253, 255, 261, 279, 285, 291, 295, 301, 309, 319, 329, 333, 335, 341, 357, 365, 369, 377, 381, 385, 395, 399, 403, 415, 417, 423, 427, 453, 455, 471, 473, 481, 485, 489, 507
Offset: 1
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isa := n -> irem(irem(binomial(2*n, n), n), 2) = 1: select(isa, [seq(1..507, 2)]); # Peter Luschny, Nov 30 2023
-
Mathematica
A367782Q[n_]:=OddQ[Mod[Binomial[2n,n],n]]; Select[Range[1000],A367782Q] (* Paolo Xausa, Dec 01 2023 *)
-
PARI
for(n=1,510,if(bitand(binomial(2*n,n)%n,1),print1(n,", ")));
-
Python
from math import comb from itertools import count, islice def A367782_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: (comb(n<<1,n)%n)&1, count(max(startvalue+(startvalue&1^1),1),2)) A367782_list = list(islice(A367782_gen(),30)) # Chai Wah Wu, Nov 30 2023
Comments