cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367782 Numbers k such that binomial(2*k,k) mod k is odd.

Original entry on oeis.org

33, 35, 51, 57, 65, 75, 85, 95, 105, 115, 117, 119, 129, 135, 147, 171, 175, 183, 185, 201, 219, 221, 225, 235, 237, 245, 247, 253, 255, 261, 279, 285, 291, 295, 301, 309, 319, 329, 333, 335, 341, 357, 365, 369, 377, 381, 385, 395, 399, 403, 415, 417, 423, 427, 453, 455, 471, 473, 481, 485, 489, 507
Offset: 1

Views

Author

Joerg Arndt, Nov 30 2023

Keywords

Comments

a(n) is odd since binomial(2*k,k) is even for k>0. - Chai Wah Wu, Nov 30 2023

Crossrefs

Cf. A059288 (binomial(2*n,n) mod n), A014847 (k such that binomial(2*k,k) mod k is zero).

Programs

  • Maple
    isa := n -> irem(irem(binomial(2*n, n), n), 2) = 1:
    select(isa, [seq(1..507, 2)]);  # Peter Luschny, Nov 30 2023
  • Mathematica
    A367782Q[n_]:=OddQ[Mod[Binomial[2n,n],n]];
    Select[Range[1000],A367782Q] (* Paolo Xausa, Dec 01 2023 *)
  • PARI
    for(n=1,510,if(bitand(binomial(2*n,n)%n,1),print1(n,", ")));
    
  • Python
    from math import comb
    from itertools import count, islice
    def A367782_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: (comb(n<<1,n)%n)&1, count(max(startvalue+(startvalue&1^1),1),2))
    A367782_list = list(islice(A367782_gen(),30)) # Chai Wah Wu, Nov 30 2023