cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367787 Let b(0) = 1, b(n) = Sum_{k=0..n-1} b(k) / b(n-k-1), then a(n) is the numerator of b(n).

This page as a plain text file.
%I A367787 #7 Dec 01 2023 15:59:26
%S A367787 1,1,2,7,44,3459,21398845,204701870532176,
%T A367787 47683439994850565666251869149,
%U A367787 203292005443961363023193564438853229653319486912062841397
%N A367787 Let b(0) = 1, b(n) = Sum_{k=0..n-1} b(k) / b(n-k-1), then a(n) is the numerator of b(n).
%C A367787 The next term is too large to include.
%F A367787 G.f. for fractions satisfies: 1 / Sum_{n>=0} b(n) * x^n = 1 - x * Sum_{n>=0} x^n / b(n).
%e A367787 1, 1, 2, 7/2, 44/7, 3459/308, 21398845/1065372, 204701870532176/5699432573835, ...
%t A367787 b[0] = 1; b[n_] := b[n] = Sum[b[k]/b[n - k - 1], {k, 0, n - 1}]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 9}]
%Y A367787 Cf. A000108, A022857, A022858, A073833, A367788 (denominators).
%K A367787 nonn,frac
%O A367787 0,3
%A A367787 _Ilya Gutkovskiy_, Nov 30 2023