cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367790 E.g.f. satisfies A(x) = exp( x/(1-x)^4 * A(x) ).

This page as a plain text file.
%I A367790 #11 Feb 16 2025 08:34:06
%S A367790 1,1,11,148,2669,62056,1777927,60692920,2408692505,109074596320,
%T A367790 5553702114731,314208715035304,19561795753879909,1329317730339826384,
%U A367790 97924919301787209647,7773978186375852940696,661702605336795904770353,60119367618216155944350400
%N A367790 E.g.f. satisfies A(x) = exp( x/(1-x)^4 * A(x) ).
%H A367790 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A367790 E.g.f.: exp( -LambertW(-x/(1-x)^4) ).
%F A367790 a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+3*k-1,n-k)/k!.
%o A367790 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^4))))
%Y A367790 Cf. A052868, A362775, A367789.
%Y A367790 Cf. A162475, A361283.
%K A367790 nonn
%O A367790 0,3
%A A367790 _Seiichi Manyama_, Nov 30 2023