cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367793 Primes p such that the sum of p and its reversal is a semiprime.

This page as a plain text file.
%I A367793 #14 Jun 21 2025 01:56:34
%S A367793 2,3,5,7,11,23,29,41,43,47,61,67,83,89,101,131,151,181,191,211,223,
%T A367793 227,233,251,293,313,353,373,383,401,409,419,421,431,433,449,457,487,
%U A367793 491,571,599,601,607,617,619,631,643,647,727,757,787,797,809,821,827,829,853,859,877,883,919,929,2011
%N A367793 Primes p such that the sum of p and its reversal is a semiprime.
%C A367793 Terms > 11 with an even number of digits have an even first digit.
%H A367793 Robert Israel, <a href="/A367793/b367793.txt">Table of n, a(n) for n = 1..10000</a>
%e A367793 a(6) = 23 is a term because 23 is a prime and 23 + 32 = 55 = 5 * 11 is a semiprime.
%p A367793 digrev:= proc(n) local L,i;
%p A367793   L:= convert(n,base,10);
%p A367793   add(L[-i]*10^(i-1),i=1..nops(L))
%p A367793 end proc:
%p A367793 select(p -> isprime(p) and numtheory:-bigomega(p+digrev(p))=2, [2,seq(i,i=3..10000,2)]);
%t A367793 Select[Prime[Range[10^3]], 2 == PrimeOmega[# + FromDigits[Reverse[IntegerDigits[#]]]] &]
%Y A367793 Cf. A001358, A056964, A061783.
%K A367793 nonn,base
%O A367793 1,1
%A A367793 _Zak Seidov_ and _Robert Israel_, Nov 30 2023