This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367795 #26 Jan 19 2024 21:43:52 %S A367795 1,0,1,2,0,1,6,2,4,0,1,14,6,26,2,20,4,8,0,1,30,14,118,6,218,26,106,2, %T A367795 84,20,164,4,72,8,16,0,1,62,30,494,14,1910,118,950,6,1754,218,7002,26, %U A367795 3434,106,426,2,340,84,2708,20,5284,164,1316,4,584,72,1160,8,272,16,32,0 %N A367795 Triangle read by rows, where row n = L(n) is defined by L(1) = [1,0] and L(n+1) is obtained from L(n) by inserting their binary concatenation between elements x,y. %C A367795 0 is considered to be a 1-bit-long number and has 0 for binary expansion. %C A367795 The numbers of bits of the numbers in this triangle are provided by the A049456 triangle. %C A367795 The sorted set of the numbers that occur in some row of this triangle is provided by A367745. %H A367795 Luc Rousseau, <a href="/A367795/a367795.svg">SVG illustration of the nesting of the L(n) lists for n=1..9</a>. %F A367795 Length of row n = #L(n) = 2^(n-1) + 1 = A000051(n-1). %e A367795 Triangle begins: %e A367795 1 0 %e A367795 1 2 0 %e A367795 1 6 2 4 0 %e A367795 1 14 6 26 2 20 4 8 0 %e A367795 1 30 14 118 6 218 26 106 2 84 20 164 ... %e A367795 Or the same in binary: %e A367795 1 0 %e A367795 1 10 0 %e A367795 1 110 10 100 0 %e A367795 1 1110 110 11010 10 10100 100 1000 0 %e A367795 1 11110 1110 1110110 110 11011010 11010 1101010 10 1010100 10100 10100100 ... %o A367795 (PARI) %o A367795 sz(n)=if(n==0, 1, logint(n, 2)+1) %o A367795 L(n)=if(n==1, List([1, 0]), my(LL=L(n-1), k=#LL); while(k>1, listinsert(LL, (LL[k-1] << sz(LL[k])) + LL[k], k); k--); LL) %o A367795 for(k=1,8,my(l=L(k));for(i=1,#l,print1(l[i],", "))) %o A367795 (Python) %o A367795 from itertools import chain, count, islice, zip_longest %o A367795 def agen(): # generator of terms %o A367795 L = ["1", "0"] %o A367795 for k in count(1): %o A367795 yield from (int(t, 2) for t in L) %o A367795 Lnew = [s+t for s, t in zip(L[:-1], L[1:])] %o A367795 L = [t for t in chain(*zip_longest(L, Lnew)) if t is not None] %o A367795 print(list(islice(agen(), 69))) # _Michael S. Branicky_, Nov 30 2023 %Y A367795 Cf. A000051, A049456, A367745. %K A367795 nonn,tabf,base %O A367795 1,4 %A A367795 _Luc Rousseau_, Nov 30 2023