This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367796 #29 Dec 30 2023 23:12:00 %S A367796 2,29,47,83,20147,23117,24107,63113,80141,81131,261104399,262005299, %T A367796 262104299,262203299,263302199,264203099,264302099,264500099, %U A367796 270401489,271500389,273104189,273302189,274401089,282203279,284302079,284500079,291104369,291203369,292005269,293005169,293104169,294302069 %N A367796 Primes p such that the sum of p and its reversal is the square of a prime. %C A367796 Terms > 83 have an odd number of digits and an even first digit. %H A367796 David A. Corneth, <a href="/A367796/b367796.txt">Table of n, a(n) for n = 1..5743</a> (terms <= 10^15) %H A367796 David A. Corneth, <a href="/A367796/a367796.gp.txt">PARI program</a> %e A367796 A056964(a(n)) = 121 = 11^2 for 2 <= n <= 4. %e A367796 A056964(a(n)) = 94249 = 307^2 for 5 <= n <= 10. %e A367796 A056964(a(n)) = 1254505561 = 35419^2 for 11 <= n <= 71. %p A367796 digrev:= proc(n) local L,i; %p A367796 L:= convert(n,base,10); %p A367796 add(L[-i]*10^(i-1),i=1..nops(L)) %p A367796 end proc: %p A367796 filter:= proc(t) local v; %p A367796 v:= sqrt(t+digrev(t)); %p A367796 v::integer and isprime(v) %p A367796 end proc: %p A367796 R:= 2, 29, 47, 83: count:= 4: flag:= true: %p A367796 for d from 3 to 9 by 2 do %p A367796 p:= prevprime(10^(d-1)); %p A367796 for i from 1 do %p A367796 p:= nextprime(p); %p A367796 p1:= floor(p/10^(d-1)); %p A367796 if p1::odd then p:= nextprime((p1+1)*10^(d-1)) fi; %p A367796 if p > 10^d then break fi; %p A367796 if filter(p) then %p A367796 count:= count+1; R:= R,p; %p A367796 fi od od: %p A367796 R; %t A367796 Select[Prime[Range[10^6]], PrimeQ[Sqrt[#+FromDigits[Reverse[IntegerDigits[#]]]]] &] (* _Stefano Spezia_, Dec 10 2023 *) %o A367796 (PARI) \\ See PARI link %Y A367796 Cf. A056964, A067030, A061783. Subset of A367793. %K A367796 nonn,base %O A367796 1,1 %A A367796 _Robert Israel_, Nov 30 2023