cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428).

This page as a plain text file.
%I A367801 #9 Dec 01 2023 15:53:57
%S A367801 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,
%T A367801 39,41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71,73,74,77,
%U A367801 78,79,82,83,85,86,87,89,91,93,94,95,97,101,102,103,105,106
%N A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428).
%C A367801 First differs from its subsequence A005117 at n = 79: a(79) = 128 is not a squarefree number.
%C A367801 First differs from A077377 at n = 63, and from A348506 at n = 68.
%C A367801 Numbers whose prime factorization contains only exponents that are odd odious numbers (A092246).
%C A367801 The asymptotic density of this sequence is Product_{p prime} f(1/p) = 0.61156148494581943994..., where f(x) = (1-x) * (1 + x/(2*(1-x^2)) + (Product_{k>=0} (1-(-x)^(2^k)) - Product_{k>=0} (1-x^(2^k))))/2.
%H A367801 Amiram Eldar, <a href="/A367801/b367801.txt">Table of n, a(n) for n = 1..12232</a> (terms below 20000)
%H A367801 Vladimir Shevelev, <a href="http://dx.doi.org/10.4064/aa8395-5-2016">S-exponential numbers</a>, Acta Arithmetica, Vol. 175 (2016), pp. 385-395.
%t A367801 odQ[n_] := OddQ[n] && OddQ[DigitCount[n, 2, 1]]; Select[Range[150], AllTrue[FactorInteger[#][[;;, 2]], odQ] &]
%o A367801 (PARI) is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2 && hammingweight(f[i, 2])%2), return (0))); 1;}
%Y A367801 Intersection of A268335 and A270428.
%Y A367801 Cf. A367802, A367803, A367804.
%Y A367801 Subsequences: A005117, A092759.
%Y A367801 Cf. A092246.
%Y A367801 Cf. A077377, A348506.
%K A367801 nonn,easy,base
%O A367801 1,2
%A A367801 _Amiram Eldar_, Dec 01 2023