This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367801 #9 Dec 01 2023 15:53:57 %S A367801 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38, %T A367801 39,41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71,73,74,77, %U A367801 78,79,82,83,85,86,87,89,91,93,94,95,97,101,102,103,105,106 %N A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428). %C A367801 First differs from its subsequence A005117 at n = 79: a(79) = 128 is not a squarefree number. %C A367801 First differs from A077377 at n = 63, and from A348506 at n = 68. %C A367801 Numbers whose prime factorization contains only exponents that are odd odious numbers (A092246). %C A367801 The asymptotic density of this sequence is Product_{p prime} f(1/p) = 0.61156148494581943994..., where f(x) = (1-x) * (1 + x/(2*(1-x^2)) + (Product_{k>=0} (1-(-x)^(2^k)) - Product_{k>=0} (1-x^(2^k))))/2. %H A367801 Amiram Eldar, <a href="/A367801/b367801.txt">Table of n, a(n) for n = 1..12232</a> (terms below 20000) %H A367801 Vladimir Shevelev, <a href="http://dx.doi.org/10.4064/aa8395-5-2016">S-exponential numbers</a>, Acta Arithmetica, Vol. 175 (2016), pp. 385-395. %t A367801 odQ[n_] := OddQ[n] && OddQ[DigitCount[n, 2, 1]]; Select[Range[150], AllTrue[FactorInteger[#][[;;, 2]], odQ] &] %o A367801 (PARI) is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2 && hammingweight(f[i, 2])%2), return (0))); 1;} %Y A367801 Intersection of A268335 and A270428. %Y A367801 Cf. A367802, A367803, A367804. %Y A367801 Subsequences: A005117, A092759. %Y A367801 Cf. A092246. %Y A367801 Cf. A077377, A348506. %K A367801 nonn,easy,base %O A367801 1,2 %A A367801 _Amiram Eldar_, Dec 01 2023