cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367804 Numbers that are both exponentially odd (A268335) and exponentially evil (A262675).

This page as a plain text file.
%I A367804 #6 Dec 01 2023 15:54:35
%S A367804 1,8,27,32,125,216,243,343,512,864,1000,1331,1944,2197,2744,3125,3375,
%T A367804 4000,4913,6859,7776,9261,10648,10976,12167,13824,16807,17576,19683,
%U A367804 24389,25000,27000,29791,30375,32768,35937,39304,42592,42875,50653,54872,59319,64000
%N A367804 Numbers that are both exponentially odd (A268335) and exponentially evil (A262675).
%C A367804 Numbers whose prime factorization contains only exponents that are odd evil numbers (A129771).
%H A367804 Amiram Eldar, <a href="/A367804/b367804.txt">Table of n, a(n) for n = 1..10000</a>
%H A367804 Vladimir Shevelev, <a href="http://dx.doi.org/10.4064/aa8395-5-2016">S-exponential numbers</a>, Acta Arithmetica, Vol. 175 (2016), pp. 385-395.
%F A367804 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A129771(k)) = Product_{p prime} f(1/p) = 1.22183814098622400889..., where f(x) = 1 + (2*x/(1-x^2) + Product_{k>=0} (1 - x^(2^k)) - Product_{k>=0} (1 - (-x)^(2^k)))/4.
%t A367804 q[n_] := OddQ[n] && EvenQ[DigitCount[n, 2, 1]]; Select[Range[150], #== 1 || AllTrue[FactorInteger[#][[;;, 2]], q] &]
%o A367804 (PARI) is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2) || hammingweight(f[i, 2])%2, return (0))); 1;}
%Y A367804 Intersection of A262675 and A268335.
%Y A367804 Cf. A367801, A367802, A367803.
%Y A367804 Cf. A129771.
%K A367804 nonn,easy,base
%O A367804 1,2
%A A367804 _Amiram Eldar_, Dec 01 2023