This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367811 #16 Dec 21 2023 15:16:45 %S A367811 1,10,2,12,11,13,14,15,16,17,18,19,20,120,3,21,121,22,122,23,123,24, %T A367811 124,25,125,26,126,27,127,28,128,29,129,30,130,100,31,131,101,32,132, %U A367811 102,33,133,103,34,134,104,35,135,105,36,136,106,37,137,107,38,138,108,39,139,109,119,110,111,112,113 %N A367811 Lexicographically earliest sequence of distinct positive terms such that the Levenshtein distance (Ld) between a(n) and a(n+1) is equal to the first digit of a(n+1). %H A367811 Éric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/more-levenshtein-distances.html">More Levenshtein distances</a>, Personal blog, December 2023. %e A367811 a(1) = 1 and a(2) = 10 are separated by an Ld of 1, and 1 is the 1st digit of a(2) %e A367811 a(2) = 10 and a(3) = 2 are separated by an Ld of 2, and 2 is the 1st digit of a(3) %e A367811 a(3) = 2 and a(4) = 12 are separated by an Ld of 1, and 1 is the 1st digit of a(4) %e A367811 a(4) = 12 and a(5) = 11 are separated by an Ld of 1, and 1 is the 1st digit of a(5) %e A367811 a(5) = 11 and a(6) = 13 are separated by an Ld of 1, and 1 is the 1st digit of a(6) etc. %t A367811 a[1]=1;a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||EditDistance[ToString@a[n-1],ToString@k]!=First@IntegerDigits@k,k++];k);Array[a,68] %o A367811 (Python) %o A367811 from itertools import islice %o A367811 from Levenshtein import distance as Ld %o A367811 def agen(): # generator of terms %o A367811 an, aset, mink = 1, {1}, 2 %o A367811 while True: %o A367811 yield an %o A367811 s, k = str(an), mink %o A367811 while k in aset or Ld(s, sk:=str(k)) != int(sk[0]): k += 1 %o A367811 an = k %o A367811 aset.add(k) %o A367811 while mink in aset: mink += 1 %o A367811 print(list(islice(agen(), 68))) # _Michael S. Branicky_, Dec 01 2023 %Y A367811 Cf. A367810. %K A367811 base,nonn %O A367811 1,2 %A A367811 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Dec 01 2023