This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367813 #11 Dec 21 2023 15:17:10 %S A367813 0,111,2,100,3,101,4,102,5,103,6,104,7,105,8,106,9,107,21,108,22,109, %T A367813 23,110,24,112,20,113,25,114,26,115,27,116,28,117,29,118,30,119,32, %U A367813 140,31,120,33,121,34,122,35,123,36,124,37,125,38,126,39,127,40,128,41,129,43,150,42,130,44,131,45,132,46,133 %N A367813 Lexicographically earliest sequence of distinct nonnegative terms such that the Levenshtein distance (Ld) between a(n) and a(n+1) is equal to 3. %H A367813 Éric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/more-levenshtein-distances.html">More Levenshtein distances</a>, Personal blog, December 2023. %e A367813 a(1) = 0 and a(2) = 111 are separated by a Ld of 3 %e A367813 a(2) = 111 and a(3) = 2 are separated by a Ld of 3 %e A367813 a(3) = 2 and a(4) = 100 are separated by a Ld of 3 %e A367813 a(4) = 100 and a(5) = 3 are separated by a Ld of 3, etc. %t A367813 a[1]=0;a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||EditDistance[ToString@a[n-1],ToString@k]!=3,k++];k);Array[a,72] %o A367813 (Python) %o A367813 from itertools import islice %o A367813 from Levenshtein import distance as Ld %o A367813 def agen(): # generator of terms %o A367813 an, aset, mink = 0, {0}, 1 %o A367813 while True: %o A367813 yield an %o A367813 s, k = str(an), mink %o A367813 while k in aset or Ld(s, str(k)) != 3: k += 1 %o A367813 an = k %o A367813 aset.add(k) %o A367813 while mink in aset: mink += 1 %o A367813 print(list(islice(agen(), 72))) # _Michael S. Branicky_, Dec 01 2023 %Y A367813 Cf. A118763, A367812, A367814, A367815. %K A367813 base,nonn %O A367813 1,2 %A A367813 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Dec 01 2023