This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367814 #13 Dec 21 2023 15:18:50 %S A367814 0,1111,2,1000,3,1001,4,1002,5,1003,6,1004,7,1005,8,1006,9,1007,21, %T A367814 1008,22,1009,23,1010,24,1011,25,1012,26,1013,27,1014,28,1015,29,1016, %U A367814 32,1017,33,1018,34,1019,35,1020,31,1022,36,1021,37,1023,38,1024,39,1025,41,1026,43,1027,44,1028,45,1029,46,1030 %N A367814 Lexicographically earliest sequence of distinct nonnegative terms such that the Levenshtein distance (Ld) between a(n) and a(n+1) is equal to 4. %H A367814 Éric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/more-levenshtein-distances.html">More Levenshtein distances</a>, Personal blog, December 2023. %e A367814 a(1) = 0 and a(2) = 1111 are separated by an Ld of 4 %e A367814 a(2) = 1111 and a(3) = 2 are separated by an Ld of 4 %e A367814 a(3) = 2 and a(4) = 1000 are separated by an Ld of 4 %e A367814 a(4) = 1000 and a(5) = 3 are separated by an Ld of 4, etc. %t A367814 a[1]=0;a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||EditDistance[ToString@a[n-1],ToString@k]!=4,k++];k);Array[a,64] %o A367814 (Python) %o A367814 from itertools import islice %o A367814 from Levenshtein import distance as Ld %o A367814 def agen(): # generator of terms %o A367814 an, aset, mink = 0, {0}, 1 %o A367814 while True: %o A367814 yield an %o A367814 s, k = str(an), mink %o A367814 while k in aset or Ld(s, str(k)) != 4: k += 1 %o A367814 an = k %o A367814 aset.add(k) %o A367814 while mink in aset: mink += 1 %o A367814 print(list(islice(agen(), 64))) # _Michael S. Branicky_, Dec 01 2023 %Y A367814 Cf. A118763, A367812, A367813, A367815. %K A367814 base,nonn %O A367814 1,2 %A A367814 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Dec 01 2023