This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367815 #13 Dec 21 2023 21:20:19 %S A367815 0,11111,2,10000,3,10001,4,10002,5,10003,6,10004,7,10005,8,10006,9, %T A367815 10007,21,10008,22,10009,23,10010,24,10011,25,10012,26,10013,27,10014, %U A367815 28,10015,29,10016,32,10017,33,10018,34,10019,35,10020,31,10022,36,10021,37,10023,38,10024,39,10025,41,10026,43 %N A367815 Lexicographically earliest sequence of distinct nonnegative terms such that the Levenshtein distance (Ld) between a(n) and a(n+1) is equal to 5. %H A367815 Éric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/more-levenshtein-distances.html">More Levenshtein distances</a>, Personal blog, December 2023. %e A367815 a(1) = 0 and a(2) = 11111 are separated by an Ld of 5 %e A367815 a(2) = 11111 and a(3) = 1 2 are separated by an Ld of 5 %e A367815 a(3) = 2 and a(4) = 10000 are separated by an Ld of 5 %e A367815 a(4) = 10000 and a(5) = 3 are separated by an Ld of 5, etc. %t A367815 a[1]=0;a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||EditDistance[ToString@a[n-1],ToString@k]!=5,k++];k);Array[a,57] %o A367815 (Python) %o A367815 from itertools import islice %o A367815 from Levenshtein import distance as Ld %o A367815 def agen(): # generator of terms %o A367815 an, aset, mink = 0, {0}, 1 %o A367815 while True: %o A367815 yield an %o A367815 s, k = str(an), mink %o A367815 while k in aset or Ld(s, str(k)) != 5: k += 1 %o A367815 an = k %o A367815 aset.add(k) %o A367815 while mink in aset: mink += 1 %o A367815 print(list(islice(agen(), 57))) # _Michael S. Branicky_, Dec 01 2023 %Y A367815 Cf. A118763, A367812, A367813, A367814. %K A367815 base,nonn %O A367815 1,2 %A A367815 _Eric Angelini_ and _Giorgos Kalogeropoulos_, Dec 01 2023