cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367822 Decimal expansion of the asymptotic mean of psi(k)/phi(k), where psi(k) is the Dedekind psi function (A001615) and phi(k) is the Euler totient function (A000010).

Original entry on oeis.org

3, 2, 7, 9, 5, 7, 7, 1, 5, 0, 9, 8, 4, 7, 8, 3, 6, 0, 7, 3, 7, 2, 9, 1, 9, 4, 9, 8, 9, 1, 4, 6, 3, 3, 9, 8, 3, 9, 9, 9, 1, 3, 0, 7, 0, 8, 1, 0, 5, 2, 6, 7, 5, 4, 0, 9, 5, 2, 6, 1, 9, 5, 3, 4, 5, 3, 9, 8, 0, 8, 3, 8, 1, 0, 3, 6, 8, 0, 6, 7, 2, 0, 6, 1, 9, 9, 9, 5, 7, 2, 7, 4, 6, 6, 0, 0, 0, 3, 7, 3, 1, 6, 7, 7, 0
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2023

Keywords

Examples

			3.27957715098478360737291949891463398399913070810526...
		

Crossrefs

Cf. A000010, A001615, A013661, A307868 (mean of the inverse ratio).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -3, 2}, {0, 4, 6}, m]; RealDigits[2 * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + 2/(p*(p-1)))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} psi(k)/phi(k).
Equals Product_{p prime} (1 + 2/(p*(p-1))).
Equals zeta(2) * Product_{p prime} (1 + 1/p^2 + 2/p^3).