cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

This page as a plain text file.
%I A367825 #20 Dec 08 2023 11:38:54
%S A367825 1,1,1,1,1,1,1,3,3,1,1,2,1,2,1,1,5,5,5,5,1,1,3,3,1,3,3,1,1,7,7,7,7,7,
%T A367825 7,1,1,4,2,4,1,4,2,4,1,1,9,9,3,9,9,3,9,9,1,10,5,5,5,5,1,5,5,5,5,1,1,1,
%U A367825 11,11,11,11,11,11,11,11,11,1,4,6,12,2,3,6,1,6,3,2,3,6,1
%N A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.
%C A367825 This array generalizes A367728.
%H A367825 Stefano Spezia, <a href="/A367825/b367825.txt">First 151 antidiagonals of the array</a>
%F A367825 A(1, n) = A026741(n+1).
%F A367825 A(2, n) = A060819(n+2).
%F A367825 A(3, n) = A060789(n+3).
%F A367825 A(4, n) = A106609(n+4).
%F A367825 A(5, n) = A106611(n+5).
%F A367825 A(6, n) = A051724(n+6).
%F A367825 A(7, n) = A106615(n+7).
%F A367825 A(8, n) = A106617(n+8) = A231190(n+16).
%F A367825 A(9, n) = A106619(n+9).
%F A367825 A(10, n) = A106612(n+10).
%e A367825 The array of the fractions begins:
%e A367825   1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
%e A367825   1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
%e A367825   1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
%e A367825   1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
%e A367825   1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
%e A367825   1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
%e A367825   1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
%e A367825   1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
%e A367825   ...
%e A367825 The array of the denominators begins:
%e A367825   1, 1, 1, 1,  1,  1,  1,  1, ...
%e A367825   1, 1, 3, 2,  5,  3,  7,  4, ...
%e A367825   1, 3, 1, 5,  3,  7,  2,  9, ...
%e A367825   1, 2, 5, 1,  7,  4,  3,  5, ...
%e A367825   1, 5, 3, 7,  1,  9,  5, 11, ...
%e A367825   1, 3, 7, 4,  9,  1, 11,  6, ...
%e A367825   1, 7, 2, 3,  5, 11,  1, 13, ...
%e A367825   1, 4, 9, 5, 11,  6, 13,  1, ...
%e A367825   ...
%t A367825 A[0,0]=1; A[n_,k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten
%Y A367825 Cf. A367824 (numerator), A367827 (antidiagonal sums).
%Y A367825 Cf. A000012 (n=0), A004086, A026741, A051724, A060789, A060819, A106609, A106611, A106612, A106615, A106617, A231190, A367728 (k=1).
%K A367825 nonn,base,frac,tabl
%O A367825 0,8
%A A367825 _Stefano Spezia_, Dec 02 2023