A367834 a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).
1, 2, 67634176, 1775927682136440882473213952, 22495149450984565292579847926810488282934424886723006835982336
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Product[i^8 + j^8, {i, 1, n}, {j, 1, n}], {n, 0, 6}]
-
Python
from math import prod, factorial def A367834(n): return (prod(i**8+j**8 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**4)**2<
Chai Wah Wu, Dec 02 2023
Formula
For n>0, a(n)/a(n-1) = A367833(n)^2 / (2*n^24).
a(n) ~ c * 2^(n*(n+1)) * (1 + 1/(sqrt(1 - 1/sqrt(2)) - 1/2))^(sqrt(2 + sqrt(2))*n*((n+1)/2)) * (1 + 1/(sqrt(1 + 1/sqrt(2)) - 1/2))^(sqrt(2 - sqrt(2))*n*((n+1)/2)) * (n^(8*n^2 - 2) / exp(12*n^2 - Pi*sqrt(1 + 1/sqrt(2))*n*(n+1))), where c = 0.043985703178712025347328240881106818917398444790454628282522057393529338998...
Comments