This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367841 #17 Jan 01 2024 00:57:50 %S A367841 151401,151403,151405,151407,179535,201085,247349,248411,250933, %T A367841 250935,292407,298433,322215,379761,441327,482691,482693,499907, %U A367841 508671,517427,584219,584221,586257,586259,605207,705055,705057,705059,718193,726563,727639,728815,812601,814247,814249,814251,831385 %N A367841 Numbers k such that k, k + 2, k + 4, k + 6, k + 8, k + 10, and k + 12 are all triprimes (A014612). %C A367841 All terms are odd, because if k is even, at least one of k, k + 2, k + 4 and k + 6 is divisible by 8. %C A367841 In the case of a(1) = 151401, k + 14, k + 16 and k + 18 are also triprimes. %C A367841 In the case of a(143) = 2560187, k + 14, k + 16, k + 18 and k + 20 are also triprimes. %H A367841 Robert Israel, <a href="/A367841/b367841.txt">Table of n, a(n) for n = 1..10000</a> %e A367841 a(5) = 179535 is a term because %e A367841 179535 = 3 * 5 * 11969 %e A367841 179535 + 2 = 179537 = 17 * 59 * 179 %e A367841 179535 + 4 = 179539 = 29 * 41 * 151 %e A367841 179535 + 6 = 179541 = 3 * 3 * 19949 %e A367841 179535 + 8 = 179543 = 7 * 13 * 1973 %e A367841 179535 + 10 = 179545 = 5 * 149 * 241 %e A367841 179535 + 12 = 179547 = 3 * 97 * 617 %e A367841 are all triprimes. %p A367841 filter:= (t -> andmap(x -> numtheory:-bigomega(x)=3, [t,t+2,t+4,t+6,t+8, %p A367841 t+10,t+12])): %p A367841 select(filter, [seq(i,i=1 .. 10^6, 2)]); %Y A367841 Cf. A014612. %K A367841 nonn %O A367841 1,1 %A A367841 _Zak Seidov_ and _Robert Israel_, Dec 31 2023