cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367842 Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).

This page as a plain text file.
%I A367842 #14 Dec 05 2023 01:43:47
%S A367842 1,2,3,4,5,6,0,1,9,5,3,9,7,9,9,8,9,7,3,8,1,7,4,1,8,5,3,0,0,7,8,2,7,1,
%T A367842 8,9,4,7,4,4,3,7,2,7,7,0,9,3,9,5,6,3,0,2,4,7,5,6,6,9,9,2,0,8,2,3,4,5,
%U A367842 7,0,6,5,4,7,1,9,5,1,8,4,1,7,2,4,6,9,9,4,8,6,3,9,0,2,6,4,1,9,3,5,0,8,6,0,4
%N A367842 Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).
%C A367842 Limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(1/n) = sqrt(2*Pi).
%F A367842 Equals (2*Pi)^(1/4) / A, where A = A074962 is the Glaisher-Kinkelin constant.
%F A367842 Equals A010767 * A092040 / A074962.
%F A367842 Equals exp(Integral_{x=0..1} x*log(Gamma(x)) dx).
%e A367842 1.23456019539799897381741853007827189474437277093956302475669920823457...
%t A367842 RealDigits[(2*Pi)^(1/4)/Glaisher, 10, 120][[1]]
%t A367842 Exp[Integrate[x*Log[Gamma[x]], {x, 0, 1}]]
%Y A367842 Cf. A010767, A092040, A074962, A367898, A367899.
%K A367842 nonn,cons
%O A367842 1,2
%A A367842 _Vaclav Kotesovec_, Dec 02 2023