This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367843 #52 Feb 07 2024 01:24:04 %S A367843 1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,6,8,12,18,30,46,70,113,186,314,531,894, %T A367843 1561,2705,4817,8514,15030,26502,47200,84698,151809,273961,496807, %U A367843 900596,1643185,2999837,5498916,10111429,18596096,34306158,63585519,118215700 %N A367843 Maximum of the absolute value of the coefficients of (1 - x^2) * (1 - x^3) * (1 - x^5) * ... * (1 - x^prime(n)). %t A367843 Table[Max[Abs[CoefficientList[Product[(1 - x^Prime[k]), {k, 1, n}], x]]], {n, 0, 46}] %o A367843 (Python) %o A367843 from collections import Counter %o A367843 from sympy import prime %o A367843 def A367843(n): %o A367843 c = {0:1} %o A367843 for k in range(1,n+1): %o A367843 p, b = prime(k), Counter(c) %o A367843 for j in c: %o A367843 b[j+p] -= c[j] %o A367843 c = b %o A367843 return max(map(abs,c.values())) # _Chai Wah Wu_, Feb 06 2024 %Y A367843 Cf. A046675, A160089, A350457, A350514. %K A367843 nonn %O A367843 0,11 %A A367843 _Ilya Gutkovskiy_, Feb 06 2024