This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367844 #19 Nov 13 2024 17:16:23 %S A367844 1,5,2,9,6,3,13,10,7,4,20,17,14,11,8,27,24,21,18,15,12,34,31,28,25,22, %T A367844 19,16,44,41,38,35,32,29,26,23,54,51,48,45,42,39,36,33,30,64,61,58,55, %U A367844 52,49,46,43,40,37,77,74,71,68,65,62,59,56,53,50,47,90,87,84,81,78,75,72,69,66,63,60,57 %N A367844 Triangle read by rows: T(n, k) = (n+5)*n/2 + 1 + (n^2 mod 3) - 3*k for 0 <= k <= n. %C A367844 This triangle read by rows yields a permutation of the natural numbers. %F A367844 T(n, 0) = (n+5)*n/2 + 1 + (n^2 mod 3) for n >= 0. %F A367844 T(n, n) = (n-1)*n/2 + 1 + (n^2 mod 3) for n >= 0. %F A367844 T(2*n, n) = 2*n*(n+1) + 1 + (n^2 mod 3) for n >= 0. %F A367844 T(n, k) - T(n, k+1) = m = 3 for 0 <= k < n (compare with A109857 where m = 2 and with A038722, seen as a triangle, where m = 1). %F A367844 G.f. of column k = 0: F(t, 0) = Sum_{n>=0} T(n, 0) * t^n = (1 + 3*t - t^3) / ((1 - t^3) * (1 - t)^2). %F A367844 G.f.: F(t, x) = Sum_{n>=0, k=0..n} T(n, k) * x^k * t^n = (F(t, 0) - x * F(x*t, 0)) / (1 - x) - 3*x*t / ((1 - t) * (1 - x*t)^2). %F A367844 Row sums are A006003(n+1) + (n^2 mod 3) * (n+1) for n >= 0. %e A367844 Triangle T(n, k) for 0 <= k <= n starts: %e A367844 n\k : 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A367844 =========================================================== %e A367844 0 : 1 %e A367844 1 : 5 2 %e A367844 2 : 9 6 3 %e A367844 3 : 13 10 7 4 %e A367844 4 : 20 17 14 11 8 %e A367844 5 : 27 24 21 18 15 12 %e A367844 6 : 34 31 28 25 22 19 16 %e A367844 7 : 44 41 38 35 32 29 26 23 %e A367844 8 : 54 51 48 45 42 39 36 33 30 %e A367844 9 : 64 61 58 55 52 49 46 43 40 37 %e A367844 10 : 77 74 71 68 65 62 59 56 53 50 47 %e A367844 11 : 90 87 84 81 78 75 72 69 66 63 60 57 %e A367844 12 : 103 100 97 94 91 88 85 82 79 76 73 70 67 %e A367844 etc. %p A367844 gf := (t^2*x-t*x-t-2)/(3*(t^2+t+1)*(t^2*x^2+t*x+1))+(5*t^2-10*t+8)/(3*(t-1)^3* (t*x-1))+(3*t-2)/((t-1)^2*(t*x-1)^2)+1/((t-1)*(t*x-1)^3): %p A367844 sert := series(gf, t, 18): px := n -> simplify(coeff(sert, t, n)): %p A367844 row := n -> local k; seq(coeff(px(n), x, k), k = 0..n): %p A367844 for n from 0 to 12 do row(n) od; # _Peter Luschny_, Dec 02 2023 %t A367844 T[n_, k_]:=(n+5)*n/2+1+Mod [n^2 ,3]-3*k; Table[T[n,k],{n,0,11},{k,0,n}] //Flatten (* _Stefano Spezia_, Dec 03 2023 *) %o A367844 (PARI) T(n,k) = (n+5)*n/2+1+(n^2%3)-3*k %o A367844 (Python) %o A367844 def A367844Row(n): %o A367844 Tn0 = (n + 5) * n // 2 + n ** 2 % 3 + 1 %o A367844 return [Tn0 - k * 3 for k in range(n + 1)] %o A367844 for n in range(9): print(A367844Row(n)) # _Peter Luschny_, Dec 03 2023 %o A367844 (Python) %o A367844 from math import isqrt, comb %o A367844 def A367844(n): return ((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(a+5)>>1)+1+a**2%3-3*(n-comb(a+1,2)) # _Chai Wah Wu_, Nov 12 2024 %Y A367844 Cf. A006003, A038722, A109857. %K A367844 nonn,easy,tabl %O A367844 0,2 %A A367844 _Werner Schulte_, Dec 02 2023