cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367849 Lexicographically earliest infinite sequence of positive integers such that for each n, the values in a path of locations starting from any i=n are all distinct, where jumps are allowed from location i to i+a(i).

This page as a plain text file.
%I A367849 #45 Dec 17 2023 02:32:42
%S A367849 1,1,2,1,3,1,1,4,1,1,2,5,3,1,1,4,6,1,1,5,1,1,7,1,6,1,1,2,1,8,7,1,1,2,
%T A367849 1,3,1,9,4,1,1,2,5,3,1,1,10,6,1,1,2,1,3,7,1,4,11,1,1,5,8,1,1,2,6,3,1,
%U A367849 12,9,1,7,1,1,2,1,3,1,10,4,13,1,1,5,1,1,2,1,11,1,1,2,1,14,1,1,2,1,3
%N A367849 Lexicographically earliest infinite sequence of positive integers such that for each n, the values in a path of locations starting from any i=n are all distinct, where jumps are allowed from location i to i+a(i).
%C A367849 Consider each index i as a location from which one can jump a(i) terms forward. No starting index can reach the same value more than once by forward jumps.
%C A367849 The value a(i) at the starting index is not part of the path (and thus allows a(2)=1).
%C A367849 The indices of first occurrences are given by A133263 (essentially triangular numbers + 2).
%C A367849 Changing the definition so that jumps are allowed only from location i to i-a(i) gives A002260.
%H A367849 Neal Gersh Tolunsky, <a href="/A367849/b367849.txt">Table of n, a(n) for n = 1..10000</a>
%H A367849 Thomas Scheuerle, <a href="/A367849/a367849.png">Plot of a(1..100000)^2</a>. It is conjectured that only the topmost straight line in this plot will extend into infinity.
%H A367849 Thomas Scheuerle, <a href="/A367849/a367849_1.png">Partial view of a(1..80000)^2 equalized to Y axis by shear mapping</a>. This shows the different lengths of the increasing sequences.
%H A367849 Neal Gersh Tolunsky, <a href="/A367849/a367849_2.png">Ordinal transform of 20000 terms</a>
%H A367849 Neal Gersh Tolunsky, <a href="/A367849/a367849_3.png">First differences of 20000 terms</a>
%F A367849 a(A133263(n)) = n + 1.
%e A367849 We can see, for example, that the terms reachable by jumping forward continuously from i=1 are all distinct (and in this case are just the positive integers):
%e A367849   1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 2, 5
%e A367849   *->1->2---->3------->4---------->5
%e A367849 Beginning at i=9 and jumping forward continuously, we get the sequence 1,2,3,4,5,6,7,9 (in which all terms are likewise distinct).
%o A367849 (MATLAB)
%o A367849 function a = A367849( max_n )
%o A367849     a = zeros(1,max_n); j = find(a == 0,1);
%o A367849     while ~isempty(j)
%o A367849         a(j) = 1; k = 1;
%o A367849         if j+k < max_n
%o A367849             while a(j+k) == 0
%o A367849                 a(j+k) = k;
%o A367849                 if j+2*k-1 < max_n
%o A367849                     j = j+(k-1); k = k+1;
%o A367849                 else
%o A367849                     break;
%o A367849                 end
%o A367849             end
%o A367849         end
%o A367849         j = find(a == 0,1);
%o A367849     end
%o A367849 end % _Thomas Scheuerle_, Dec 09 2023
%Y A367849 Cf. A367467, A367832, A133263 (index of first occurrences), A362248.
%K A367849 nonn
%O A367849 1,3
%A A367849 _Neal Gersh Tolunsky_, Dec 08 2023