This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367849 #45 Dec 17 2023 02:32:42 %S A367849 1,1,2,1,3,1,1,4,1,1,2,5,3,1,1,4,6,1,1,5,1,1,7,1,6,1,1,2,1,8,7,1,1,2, %T A367849 1,3,1,9,4,1,1,2,5,3,1,1,10,6,1,1,2,1,3,7,1,4,11,1,1,5,8,1,1,2,6,3,1, %U A367849 12,9,1,7,1,1,2,1,3,1,10,4,13,1,1,5,1,1,2,1,11,1,1,2,1,14,1,1,2,1,3 %N A367849 Lexicographically earliest infinite sequence of positive integers such that for each n, the values in a path of locations starting from any i=n are all distinct, where jumps are allowed from location i to i+a(i). %C A367849 Consider each index i as a location from which one can jump a(i) terms forward. No starting index can reach the same value more than once by forward jumps. %C A367849 The value a(i) at the starting index is not part of the path (and thus allows a(2)=1). %C A367849 The indices of first occurrences are given by A133263 (essentially triangular numbers + 2). %C A367849 Changing the definition so that jumps are allowed only from location i to i-a(i) gives A002260. %H A367849 Neal Gersh Tolunsky, <a href="/A367849/b367849.txt">Table of n, a(n) for n = 1..10000</a> %H A367849 Thomas Scheuerle, <a href="/A367849/a367849.png">Plot of a(1..100000)^2</a>. It is conjectured that only the topmost straight line in this plot will extend into infinity. %H A367849 Thomas Scheuerle, <a href="/A367849/a367849_1.png">Partial view of a(1..80000)^2 equalized to Y axis by shear mapping</a>. This shows the different lengths of the increasing sequences. %H A367849 Neal Gersh Tolunsky, <a href="/A367849/a367849_2.png">Ordinal transform of 20000 terms</a> %H A367849 Neal Gersh Tolunsky, <a href="/A367849/a367849_3.png">First differences of 20000 terms</a> %F A367849 a(A133263(n)) = n + 1. %e A367849 We can see, for example, that the terms reachable by jumping forward continuously from i=1 are all distinct (and in this case are just the positive integers): %e A367849 1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 2, 5 %e A367849 *->1->2---->3------->4---------->5 %e A367849 Beginning at i=9 and jumping forward continuously, we get the sequence 1,2,3,4,5,6,7,9 (in which all terms are likewise distinct). %o A367849 (MATLAB) %o A367849 function a = A367849( max_n ) %o A367849 a = zeros(1,max_n); j = find(a == 0,1); %o A367849 while ~isempty(j) %o A367849 a(j) = 1; k = 1; %o A367849 if j+k < max_n %o A367849 while a(j+k) == 0 %o A367849 a(j+k) = k; %o A367849 if j+2*k-1 < max_n %o A367849 j = j+(k-1); k = k+1; %o A367849 else %o A367849 break; %o A367849 end %o A367849 end %o A367849 end %o A367849 j = find(a == 0,1); %o A367849 end %o A367849 end % _Thomas Scheuerle_, Dec 09 2023 %Y A367849 Cf. A367467, A367832, A133263 (index of first occurrences), A362248. %K A367849 nonn %O A367849 1,3 %A A367849 _Neal Gersh Tolunsky_, Dec 08 2023