cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367854 Indices at which record high values occur in A367821.

This page as a plain text file.
%I A367854 #27 Jan 19 2024 21:33:56
%S A367854 1,2,4,6,72,75,152,518,631,1585,2512,4217,5275,13895,14678,53367,
%T A367854 177828,464159,1154782,2154435,3162278,4641589,8483429,8576959,
%U A367854 13894955,15848932,21544347,68129207,74989421,100000001,114504757,170125428,517947468,1000000001
%N A367854 Indices at which record high values occur in A367821.
%C A367854 Each term after a(1) = 1 is the smallest integer whose base-10 logarithm exceeds some ratio of integers N/D with D <= 21 = floor(1/(1 - log_10(9))); see Example section. - _Jon E. Schoenfield_, Dec 03 2023
%e A367854 From _Jon E. Schoenfield_, Dec 03 2023: (Start)
%e A367854 The following table illustrates how the base-10 logarithm of each term from a(2) through a(17) is slightly larger than a ratio of integers N/D with D <= 21.
%e A367854 .
%e A367854    n   a(n)    log_10(a(n))    N/D   log_10(a(n))*D
%e A367854   --  ------  --------------  -----  --------------
%e A367854    2       2  0.301029995...   3/10   3.01029995...
%e A367854    3       4  0.602059991...   3/5    3.01029995...
%e A367854    4       6  0.778151250...   7/9    7.00336125...
%e A367854    5      72  1.857332496...  13/7   13.00132747...
%e A367854    6      75  1.875061263...  15/8   15.00049010...
%e A367854    7     152  2.181843587...  24/11  24.00027946...
%e A367854    8     518  2.714329759...  19/7   19.00030831...
%e A367854    9     631  2.800029359...  14/5   14.00014679...
%e A367854   10    1585  3.200029266...  16/5   16.00014633...
%e A367854   11    2512  3.400019635...  17/5   17.00009817...
%e A367854   12    4217  3.625003601...  29/8   29.00002880...
%e A367854   13    5275  3.722222463...  67/18  67.00000435...
%e A367854   14   13895  4.142858551...  29/7   29.00000985...
%e A367854   15   14678  4.166666883...  25/6   25.00000130...
%e A367854   16   53367  4.727272789...  52/11  52.00000068...
%e A367854   17  177828  5.250000144...  21/4   21.00000057...
%e A367854   ...
%e A367854 E.g., log_10(a(17)) = log_10(177828) slightly exceeds 21/4; 10^(21/4) = 10^5 * 10^(1/4) = 100000 * 1.77827941..., so 177828^k is slightly farther above the nearest lower power of 10 than 177828^(k-4) is. This near-periodic behavior of the mantissas, with their slow upward creep at every 4th exponent, explains why none of the mantissas of 177828^k begin with 9 until k gets very large:
%e A367854 .
%e A367854      k          177828^k
%e A367854   -------  ------------------
%e A367854         1  1.7782800e+0000005
%e A367854         2  3.1622799e+0000010
%e A367854         3  5.6234188e+0000015
%e A367854         4  1.0000013e+0000021
%e A367854         5  1.7782824e+0000026
%e A367854         6  3.1622840e+0000031
%e A367854         7  5.6234263e+0000036
%e A367854         8  1.0000027e+0000042
%e A367854         9  1.7782847e+0000047
%e A367854        10  3.1622882e+0000052
%e A367854        11  5.6234338e+0000057
%e A367854       ...
%e A367854        15  5.6234412e+0000078
%e A367854        19  5.6234487e+0000099
%e A367854        23  5.6234562e+0000120
%e A367854       ...
%e A367854   1417539  8.9999657e+7442079
%e A367854   1417543  8.9999776e+7442100
%e A367854   1417547  8.9999896e+7442121
%e A367854   1417551  9.0000015e+7442142
%e A367854 (End)
%Y A367854 Cf. A367821.
%K A367854 nonn,base
%O A367854 1,2
%A A367854 _William Hu_, Dec 02 2023
%E A367854 More terms from _Jon E. Schoenfield_, Dec 03 2023