This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367858 #12 Jan 19 2024 04:33:43 %S A367858 1,2,1,3,2,2,4,1,2,3,3,5,1,2,6,4,4,3,3,1,7,1,2,8,1,3,4,4,5,5,9,1,2,3, %T A367858 6,6,2,1,4,10,3,3,3,11,1,5,5,7,7,4,4,2,2,12,8,8,6,6,1,3,13,4,4,4,14,1, %U A367858 5,2,3,9,9,15,1,2,4,1,3,7,7,1,6,16,1,2 %N A367858 Irregular triangle read by rows where row n is the multiset multiplicity cokernel (MMC) of the multiset of prime indices of n. %C A367858 Row n = 1 is empty. %C A367858 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367858 We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. %F A367858 For all positive integers n and k, row n^k is the same as row n. %e A367858 The first 45 rows: %e A367858 1: {} 16: {1} 31: {11} %e A367858 2: {1} 17: {7} 32: {1} %e A367858 3: {2} 18: {1,2} 33: {5,5} %e A367858 4: {1} 19: {8} 34: {7,7} %e A367858 5: {3} 20: {1,3} 35: {4,4} %e A367858 6: {2,2} 21: {4,4} 36: {2,2} %e A367858 7: {4} 22: {5,5} 37: {12} %e A367858 8: {1} 23: {9} 38: {8,8} %e A367858 9: {2} 24: {1,2} 39: {6,6} %e A367858 10: {3,3} 25: {3} 40: {1,3} %e A367858 11: {5} 26: {6,6} 41: {13} %e A367858 12: {1,2} 27: {2} 42: {4,4,4} %e A367858 13: {6} 28: {1,4} 43: {14} %e A367858 14: {4,4} 29: {10} 44: {1,5} %e A367858 15: {3,3} 30: {3,3,3} 45: {2,3} %t A367858 mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367858 Table[mmc[PrimePi /@ Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}] %Y A367858 Indices of empty and singleton rows are A000961. %Y A367858 Row lengths are A001221. %Y A367858 Depends only on rootless base A052410, see A007916. %Y A367858 Row maxima are A061395. %Y A367858 Rows have A071625 distinct elements. %Y A367858 Indices of constant rows are A072774. %Y A367858 Indices of strict rows are A130091. %Y A367858 Row minima are A367587. %Y A367858 Rows have Heinz numbers A367859. %Y A367858 Row sums are A367860. %Y A367858 Sorted row indices of first appearances are A367861, for kernel A367585. %Y A367858 A007947 gives squarefree kernel. %Y A367858 A112798 lists prime indices, length A001222, sum A056239, reverse A296150. %Y A367858 A124010 lists prime multiplicities (prime signature), sorted A118914. %Y A367858 A181819 gives prime shadow, with an inverse A181821. %Y A367858 A238747 gives prime metasignature, reversed A353742. %Y A367858 A304038 lists distinct prime indices, length A001221, sum A066328. %Y A367858 Cf. A000720, A027746, A051904, A052409, A061395, A175781, A367582, A367583. %K A367858 nonn,tabf %O A367858 1,2 %A A367858 _Gus Wiseman_, Dec 03 2023