cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367859 Multiset multiplicity cokernel (MMC) of n. Product of (greatest prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.

This page as a plain text file.
%I A367859 #5 Dec 04 2023 06:39:21
%S A367859 1,2,3,2,5,9,7,2,3,25,11,6,13,49,25,2,17,6,19,10,49,121,23,6,5,169,3,
%T A367859 14,29,125,31,2,121,289,49,9,37,361,169,10,41,343,43,22,15,529,47,6,7,
%U A367859 10,289,26,53,6,121,14,361,841,59,50,61,961,21,2,169,1331
%N A367859 Multiset multiplicity cokernel (MMC) of n. Product of (greatest prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.
%C A367859 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A367859 We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.
%F A367859 a(n^k) = a(n) for all positive integers n and k.
%F A367859 If n is squarefree, a(n) = A006530(n)^A001222(n).
%F A367859 A055396(a(n)) = A367587(n).
%F A367859 A056239(a(n)) = A367860(n).
%F A367859 A061395(a(n)) = A061395(n).
%F A367859 A001222(a(n)) = A001221(n).
%F A367859 A001221(a(n)) = A071625(n).
%F A367859 A071625(a(n)) = A323022(n).
%e A367859 90 has prime factorization 2^1*3^2*5^1, so for k = 1 we have 5^2, and for k = 2 we have 3^1, so a(90) = 75.
%t A367859 mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367859 Table[Times@@mmc[Join@@ConstantArray@@@FactorInteger[n]], {n,30}]
%Y A367859 Positions of 2's are A000079 without 1.
%Y A367859 Positions of 3's are A000244 without 1.
%Y A367859 Positions of primes (including 1) are A000961.
%Y A367859 Depends only on rootless base A052410, see A007916.
%Y A367859 Positions of prime powers are A072774.
%Y A367859 Positions of squarefree numbers are A130091.
%Y A367859 For kernel instead of cokernel we have A367580, ranks of A367579.
%Y A367859 Rows of A367858 have this rank, sum A367860, max A061395, min A367587.
%Y A367859 A007947 gives squarefree kernel.
%Y A367859 A027746 lists prime factors, length A001222, indices A112798.
%Y A367859 A027748 lists distinct prime factors, length A001221, indices A304038.
%Y A367859 A071625 counts distinct prime exponents.
%Y A367859 A124010 gives multiset of multiplicities (prime signature), sorted A118914.
%Y A367859 Cf. A005117, A020639, A052409, A175781, A181819, A353742, A367584, A367585.
%K A367859 nonn
%O A367859 1,2
%A A367859 _Gus Wiseman_, Dec 03 2023