cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367861 Numbers k whose multiset multiplicity cokernel (in which each prime exponent becomes the greatest prime factor with that exponent) is different from that of all positive integers less than k.

This page as a plain text file.
%I A367861 #5 Dec 04 2023 06:39:01
%S A367861 1,2,3,5,6,7,10,11,12,13,14,17,19,20,22,23,26,28,29,30,31,34,37,38,41,
%T A367861 42,43,44,45,46,47,52,53,58,59,60,61,62,63,66,67,68,71,73,74,76,78,79,
%U A367861 82,83,84,86,89,90,92,94,97,99,101,102,103,106,107,109,113
%N A367861 Numbers k whose multiset multiplicity cokernel (in which each prime exponent becomes the greatest prime factor with that exponent) is different from that of all positive integers less than k.
%C A367861 We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.
%e A367861 The terms together with their prime indices begin:
%e A367861      1: {}         23: {9}        47: {15}
%e A367861      2: {1}        26: {1,6}      52: {1,1,6}
%e A367861      3: {2}        28: {1,1,4}    53: {16}
%e A367861      5: {3}        29: {10}       58: {1,10}
%e A367861      6: {1,2}      30: {1,2,3}    59: {17}
%e A367861      7: {4}        31: {11}       60: {1,1,2,3}
%e A367861     10: {1,3}      34: {1,7}      61: {18}
%e A367861     11: {5}        37: {12}       62: {1,11}
%e A367861     12: {1,1,2}    38: {1,8}      63: {2,2,4}
%e A367861     13: {6}        41: {13}       66: {1,2,5}
%e A367861     14: {1,4}      42: {1,2,4}    67: {19}
%e A367861     17: {7}        43: {14}       68: {1,1,7}
%e A367861     19: {8}        44: {1,1,5}    71: {20}
%e A367861     20: {1,1,3}    45: {2,2,3}    73: {21}
%e A367861     22: {1,5}      46: {1,9}      74: {1,12}
%t A367861 nn=100;
%t A367861 mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367861 qq=Table[Times@@mmc[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
%t A367861 Select[Range[nn], FreeQ[Take[qq,#-1],qq[[#]]]&]
%Y A367861 Contains all primes A000040 but no other perfect powers A001597.
%Y A367861 All terms are rootless A007916 (have no positive integer roots).
%Y A367861 For kernel instead of cokernel we have A367585, sorted version of A367584.
%Y A367861 The MMC triangle is A367858, sum A367860, min A367857, max A061395.
%Y A367861 Sorted positions of first appearances in A367859.
%Y A367861 A007947 gives squarefree kernel.
%Y A367861 A027746 lists prime factors, length A001222, indices A112798.
%Y A367861 A027748 lists distinct prime factors, length A001221, indices A304038.
%Y A367861 A071625 counts distinct prime exponents.
%Y A367861 A124010 gives prime signature, sorted A118914.
%Y A367861 Cf. A020639, A051904, A072774, A073485, A130091, A181819, A367582, A367768.
%K A367861 nonn
%O A367861 1,2
%A A367861 _Gus Wiseman_, Dec 03 2023