This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367899 #10 Feb 16 2025 08:34:06 %S A367899 8,2,6,7,9,8,4,6,4,3,9,4,9,7,1,3,7,1,8,3,5,3,6,4,6,4,9,4,4,6,4,3,0,0, %T A367899 6,3,7,8,3,3,9,9,7,8,2,3,6,7,0,2,9,1,2,0,2,4,1,0,6,0,1,8,1,8,8,0,5,8, %U A367899 0,9,8,7,7,2,5,7,2,6,3,3,2,3,3,7,2,6,7,7,2,7,2,5,5,6,9,2,3,8,0,7,4,1,3,1,8,6 %N A367899 Decimal expansion of limit_{n->oo} Product_{k=1..n} BarnesG(k/n)^(k/n^2). %H A367899 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>. %H A367899 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>. %F A367899 Equals exp(1/24 + 3*zeta(3)/(8*Pi^2)) / (sqrt(A) * (2*Pi)^(1/12)), where A = A074962 is the Glaisher-Kinkelin constant. %F A367899 Equals exp(Integral_{x=0..1} x*log(BarnesG(x)) dx). %e A367899 0.82679846439497137183536464944643006378339978236702912024106018188... %t A367899 RealDigits[E^(1/24 + 3*Zeta[3]/(8*Pi^2))/(Sqrt[Glaisher]*(2*Pi)^(1/12)), 10, 120][[1]] %t A367899 Exp[Integrate[x*Log[BarnesG[x]], {x, 0, 1}]] %Y A367899 Cf. A074962, A367842, A367898. %K A367899 nonn,cons %O A367899 0,1 %A A367899 _Vaclav Kotesovec_, Dec 04 2023