This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367900 #10 Dec 30 2023 23:12:45 %S A367900 2,83,81131,894500063,88990607813,8499228209501,8597793891803, %T A367900 800072140300001,859981720058603,899969843983163,82943190509220401, %U A367900 86999838571212401,88290616680100001,89991996902408171,83909667566050103,89690298128004023,89919974791600043,8069990701280128001,8299959944574088001 %N A367900 a(n) is the greatest prime q such that A367798(n)^2 is the sum of q and its reversal. %C A367900 a(n) is the last term q of A367796 such that A056964(q) = A367798(n)^2. %F A367900 A056964(a(n)) = A367798(n)^2. %e A367900 a(4) = 894500063 because A367798(3) = 35419 and 35419^2 = 1254505561 = 894500063 + 360005498 and 894500063 is the greatest prime that works. %p A367900 f:= proc(n) local y, c, d, dp, i, delta, m; %p A367900 y:= convert(n^2, base, 10); %p A367900 d:= nops(y); %p A367900 if d::even then %p A367900 if y[-1] <> 1 then return false fi; %p A367900 dp:= d-1; %p A367900 y:= y[1..-2]; %p A367900 c[dp]:= 1; %p A367900 else %p A367900 dp:= d; %p A367900 c[dp]:= 0; %p A367900 fi; %p A367900 c[0]:= 0; %p A367900 for i from 1 to floor(dp/2) do %p A367900 delta:= y[i] - y[dp+1-i] - c[i-1] - 10*c[dp+1-i]; %p A367900 if delta = 0 then c[dp-i]:= 0; c[i]:= 0; %p A367900 elif delta = -1 then c[dp-i]:= 1; c[i]:= 0; %p A367900 elif delta = -10 then c[dp-i]:= 0 ; c[i]:= 1; %p A367900 elif delta = -11 then c[dp-i]:= 1; c[i]:= 1; %p A367900 else return false %p A367900 fi; %p A367900 if y[i] + 10*c[i] - c[i-1] < 0 or (i=1 and y[i]+10*c[i]-c[i-1]=1) then return false fi; %p A367900 od; %p A367900 m:= (dp+1)/2; %p A367900 delta:= y[m] + 10*c[m] - c[m-1]; %p A367900 if not member(delta, [seq(i, i=0..18, 2)]) then return false fi; %p A367900 [seq(y[i]+ 10*c[i]-c[i-1], i=1..m)] %p A367900 end proc: %p A367900 g:= proc(L) local T, d, t, p, x, i; uses combinat; %p A367900 d:= nops(L); %p A367900 T:= cartprod([select(t -> t[1]::odd, [seq([L[1]-x, x], x=min(L[1], 9)..max(1, L[1]-9),-1)]), %p A367900 seq([seq([L[i]-x, x], x=min(9, L[i])..max(0, L[i]-9),-1)], i=2..d-1)]); %p A367900 while not T[finished] do %p A367900 t:= T[nextvalue](); %p A367900 p:= add(t[i][1]*10^(i-1), i=1..d-1) + L[-1]/2 * 10^(d-1) + %p A367900 add(t[i][2]*10^(2*d-i-1), i=1..d-1); %p A367900 if isprime(p) then return p fi; %p A367900 od; %p A367900 -1 %p A367900 end proc: %p A367900 p:= 2, 11: Q:= 83: %p A367900 while p < 10^10 do %p A367900 p:= nextprime(p); %p A367900 d:= 1+ilog10(p^2); %p A367900 if d::even and p^2 >= 2*10^(d-1) then p:= nextprime(floor(10^(d/2))); fi; %p A367900 v:= f(p); %p A367900 if v = false then next fi; %p A367900 q:= g(v); %p A367900 if q = -1 then next fi; %p A367900 Q:= Q, q; %p A367900 od: %p A367900 Q; %Y A367900 Cf. A056964, A367796, A367798, A367871. %K A367900 nonn,base %O A367900 1,1 %A A367900 _Robert Israel_, Dec 04 2023