A367904 Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.
1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0
Keywords
Examples
The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3). The a(0) = 1 through a(2) = 6 set-systems: {} {} {} {{1}} {{1}} {{2}} {{1},{2}} {{1},{1,2}} {{2},{1,2}}
Links
- Christian Sievers, Table of n, a(n) for n = 0..77
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]
Formula
Binomial transform of A003024. - Christian Sievers, Aug 12 2024
Extensions
a(5)-a(8) from Christian Sievers, Jul 26 2024
More terms from Christian Sievers, Aug 12 2024