This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367906 #14 Dec 28 2023 19:27:39 %S A367906 1,2,3,4,5,6,8,9,10,11,12,13,14,16,17,18,19,20,21,22,24,26,28,32,33, %T A367906 34,35,36,37,38,40,41,44,48,49,50,52,56,64,65,66,67,68,69,70,72,73,74, %U A367906 76,80,81,82,84,88,96,97,98,100,104,112,128,129,130,131,132 %N A367906 Numbers k such that it is possible to choose a different binary index of each binary index of k. %C A367906 Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice. %C A367906 A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. %C A367906 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A367906 John Tyler Rascoe, <a href="/A367906/b367906.txt">Table of n, a(n) for n = 1..10000</a> %H A367906 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %e A367906 The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence. %e A367906 The terms together with the corresponding set-systems begin: %e A367906 1: {{1}} %e A367906 2: {{2}} %e A367906 3: {{1},{2}} %e A367906 4: {{1,2}} %e A367906 5: {{1},{1,2}} %e A367906 6: {{2},{1,2}} %e A367906 8: {{3}} %e A367906 9: {{1},{3}} %e A367906 10: {{2},{3}} %e A367906 11: {{1},{2},{3}} %e A367906 12: {{1,2},{3}} %e A367906 13: {{1},{1,2},{3}} %e A367906 14: {{2},{1,2},{3}} %e A367906 16: {{1,3}} %e A367906 17: {{1},{1,3}} %t A367906 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A367906 Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&] %o A367906 (Python) %o A367906 from itertools import count, islice, product %o A367906 def bin_i(n): #binary indices %o A367906 return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) %o A367906 def a_gen(): #generator of terms %o A367906 for n in count(1): %o A367906 for j in list(product(*[bin_i(k) for k in bin_i(n)])): %o A367906 if len(set(j)) == len(j): %o A367906 yield(n); break %o A367906 A367906_list = list(islice(a_gen(),100)) # _John Tyler Rascoe_, Dec 23 2023 %Y A367906 These set-systems are counted by A367902, non-isomorphic A368095. %Y A367906 Positions of positive terms in A367905, firsts A367910, sorted A367911. %Y A367906 The complement is A367907. %Y A367906 If there is one unique choice we get A367908, counted by A367904. %Y A367906 If there are multiple choices we get A367909, counted by A367772. %Y A367906 Unlabeled multiset partitions of this type are A368098, complement A368097. %Y A367906 A version for MM-numbers of multisets is A368100, complement A355529. %Y A367906 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A367906 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A367906 A070939 gives length of binary expansion. %Y A367906 A096111 gives product of binary indices. %Y A367906 A326031 gives weight of the set-system with BII-number n. %Y A367906 Cf. A000612, A055621, A059519, A072639, A083323, A309326, A326702, A326753, A367770, A367912. %Y A367906 BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral). %K A367906 base,nonn %O A367906 1,2 %A A367906 _Gus Wiseman_, Dec 11 2023