This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367908 #16 Feb 11 2024 02:34:53 %S A367908 1,2,3,5,6,8,9,10,11,13,14,17,19,21,22,24,26,28,34,35,37,38,40,41,44, %T A367908 49,50,56,67,69,70,73,74,81,88,98,104,128,129,130,131,133,134,136,137, %U A367908 138,139,141,142,145,147,149,150,152,154,156,162,163,165,166,168 %N A367908 Numbers n such that there is only one way to choose a different binary index of each binary index of n. %C A367908 Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in exactly one way. %C A367908 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. %C A367908 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A367908 John Tyler Rascoe, <a href="/A367908/b367908.txt">Table of n, a(n) for n = 1..2000</a> %H A367908 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %F A367908 A367907 U A367908 U A367909 = A000027. %e A367908 The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence. %e A367908 The terms together with the corresponding set-systems begin: %e A367908 1: {{1}} %e A367908 2: {{2}} %e A367908 3: {{1},{2}} %e A367908 5: {{1},{1,2}} %e A367908 6: {{2},{1,2}} %e A367908 8: {{3}} %e A367908 9: {{1},{3}} %e A367908 10: {{2},{3}} %e A367908 11: {{1},{2},{3}} %e A367908 13: {{1},{1,2},{3}} %e A367908 14: {{2},{1,2},{3}} %e A367908 17: {{1},{1,3}} %e A367908 19: {{1},{2},{1,3}} %e A367908 21: {{1},{1,2},{1,3}} %e A367908 22: {{2},{1,2},{1,3}} %t A367908 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A367908 Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&] %o A367908 (Python) %o A367908 from itertools import count, islice, product %o A367908 def bin_i(n): #binary indices %o A367908 return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) %o A367908 def a_gen(): #generator of terms %o A367908 for n in count(1): %o A367908 p = list(product(*[bin_i(k) for k in bin_i(n)])) %o A367908 x,c = len(p),0 %o A367908 for j in range(x): %o A367908 if len(set(p[j])) == len(p[j]): c += 1 %o A367908 if j+1 == x and c == 1: yield(n) %o A367908 A367908_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, Feb 10 2024 %Y A367908 These set-systems are counted by A367904. %Y A367908 Positions of 1's in A367905, firsts A367910, sorted firsts A367911. %Y A367908 If there is at least one choice we get A367906, counted by A367902. %Y A367908 If there are no choices we get A367907, counted by A367903. %Y A367908 If there are multiple choices we get A367909, counted by A367772. %Y A367908 The version for MM-numbers of multiset partitions is A368101. %Y A367908 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A367908 A058891 counts set-systems, covering A003465, connected A323818. %Y A367908 A059201 counts covering T_0 set-systems. %Y A367908 A070939 gives length of binary expansion. %Y A367908 A096111 gives product of binary indices. %Y A367908 A326031 gives weight of the set-system with BII-number n. %Y A367908 A368098 counts unlabeled multiset partitions for axiom, complement A368097. %Y A367908 Cf. A000612, A059519, A309326, A326675, A326702, A326753, A326872, A355529, A367902, A367912. %Y A367908 BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral). %K A367908 nonn,base %O A367908 1,2 %A A367908 _Gus Wiseman_, Dec 11 2023