A367909 Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1
Keywords
Examples
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence. The terms together with the corresponding set-systems begin: 4: {{1,2}} 12: {{1,2},{3}} 16: {{1,3}} 18: {{2},{1,3}} 20: {{1,2},{1,3}} 32: {{2,3}} 33: {{1},{2,3}} 36: {{1,2},{2,3}} 48: {{1,3},{2,3}} 52: {{1,2},{1,3},{2,3}} 64: {{1,2,3}} 65: {{1},{1,2,3}} 66: {{2},{1,2,3}} 68: {{1,2},{1,2,3}} 72: {{3},{1,2,3}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
Comments