A367910 Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.
7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
Offset: 0
Examples
The terms together with the corresponding set-systems begin: 7: {{1},{2},{1,2}} 1: {{1}} 4: {{1,2}} 20: {{1,2},{1,3}} 68: {{1,2},{1,2,3}} 320: {{1,2,3},{1,4}} 352: {{2,3},{1,2,3},{1,4}} 1088: {{1,2,3},{1,2,4}} 3136: {{1,2,3},{1,2,4},{3,4}} 13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} 16704: {{1,2,3},{1,4},{1,2,3,4}} 5184: {{1,2,3},{1,2,4},{1,3,4}} 82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}} 70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}]; spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; Table[Position[c,n][[1,1]],{n,0,spnm[c]}]
Comments