This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367911 #6 Dec 17 2023 11:23:37 %S A367911 1,4,7,20,68,320,352,1088,3136,5184,13376,16704,17472,70720,82240, %T A367911 83008,90112,90176 %N A367911 Sorted positions of first appearances in A367905. %C A367911 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}. %e A367911 The terms together with the corresponding set-systems begin: %e A367911 1: {{1}} %e A367911 4: {{1,2}} %e A367911 7: {{1},{2},{1,2}} %e A367911 20: {{1,2},{1,3}} %e A367911 68: {{1,2},{1,2,3}} %e A367911 320: {{1,2,3},{1,4}} %e A367911 352: {{2,3},{1,2,3},{1,4}} %e A367911 1088: {{1,2,3},{1,2,4}} %e A367911 3136: {{1,2,3},{1,2,4},{3,4}} %e A367911 5184: {{1,2,3},{1,2,4},{1,3,4}} %e A367911 13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} %e A367911 16704: {{1,2,3},{1,4},{1,2,3,4}} %e A367911 17472: {{1,2,3},{1,2,4},{1,2,3,4}} %e A367911 70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}} %e A367911 82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}} %t A367911 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A367911 c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}]; %t A367911 Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&] %Y A367911 Sorted positions of first appearances in A367905. %Y A367911 The unsorted version is A367910. %Y A367911 Multisets without distinctness are A367915, unsorted A367913. %Y A367911 Without distinctness we have A368112, unsorted A368111. %Y A367911 For sets instead of sequences we have A368185, unsorted A368184. %Y A367911 A048793 lists binary indices, length A000120, sum A029931. %Y A367911 A058891 counts set-systems, covering A003465, connected A323818. %Y A367911 A070939 gives length of binary expansion. %Y A367911 A096111 gives product of binary indices. %Y A367911 Cf. A072639, A309326, A326031, A326702, A326753, A367902, A367906, A367907, A367912, A368109, A368183. %K A367911 nonn,more %O A367911 1,2 %A A367911 _Gus Wiseman_, Dec 16 2023