A367913 Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.
1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
Offset: 1
Keywords
Examples
The terms together with the corresponding set-systems begin: 1: {{1}} 4: {{1,2}} 64: {{1,2,3}} 20: {{1,2},{1,3}} 68: {{1,2},{1,2,3}} 320: {{1,2,3},{1,4}} 52: {{1,2},{1,3},{2,3}} 84: {{1,2},{1,3},{1,2,3}} 16448: {{1,2,3},{1,2,3,4}} 324: {{1,2},{1,2,3},{1,4}} 832: {{1,2,3},{1,4},{2,4}} 116: {{1,2},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,1000}]; Table[Position[c,n][[1,1]],{n,spnm[c]}]
Comments