cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367914 Movement sequence in the counter-clockwise undulating spiral, whereby 1, 2, 3, 4 represent moves to the right, down, left and up.

This page as a plain text file.
%I A367914 #21 Jan 20 2024 09:12:54
%S A367914 1,4,3,4,3,2,3,2,1,2,1,2,1,4,1,4,1,4,3,4,3,4,3,4,3,2,3,2,3,2,3,2,1,2,
%T A367914 1,2,1,2,1,2,1,4,1,4,1,4,1,4,1,4,3,4,3,4,3,4,3,4,3,4,3,2,3,2,3,2,3,2,
%U A367914 3,2,3,2,1,2,1,2,1,2,1,2,1,2,1,2,1,4,1,4,1,4,1,4,1,4
%N A367914 Movement sequence in the counter-clockwise undulating spiral, whereby 1, 2, 3, 4 represent moves to the right, down, left and up.
%C A367914   y ^
%C A367914     |
%C A367914   4 |              2---3
%C A367914     |              |   |
%C A367914   3 |          2---3   4---3
%C A367914     |          |           |
%C A367914   2 |      2---3   2---3   4---3
%C A367914     |      |       |   |       |
%C A367914   1 |  2---3   2---3   4---3   4---3
%C A367914     |  |       |           |       |
%C A367914   0 |  1---2   1---2   1---4   1---4
%C A367914     |      |       |           |       |
%C A367914  -1 |      1---2   1-- 2   1---4   1---4
%C A367914     |          |       |   |       |
%C A367914  -2 |          1---2   1---4   1---4
%C A367914     |              |           |
%C A367914  -3 |              1---2   1---4
%C A367914     |                  |   |
%C A367914  -4 |                  1---4
%C A367914     +------------------------------------>
%C A367914       -4  -3  -2  -1   0   1   2   3   4 x
%F A367914 a(k1)=1 with k1=i^2*8+i*0+2*j+1  with i,j >= 0 and j<=4i.
%F A367914 a(k2)=2 with k2=i^2*8+i*12+2*j+6 with i,j >= 0 and j<=4*i+3.
%F A367914 a(k3)=3 with k3=i^2*8+i*8+2*j+3 with  i,j >= 0 and j<=4*i+2.
%F A367914 a(k4)=4 with k4=i^2*8+i*4+2*j+2 with  i,j >= 0 and j<=4*i+1.
%Y A367914 Cf. A359058, A359216, A359217, A063826.
%K A367914 nonn,walk
%O A367914 1,2
%A A367914 _Hans G. Oberlack_, Dec 04 2023