cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367915 Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).

This page as a plain text file.
%I A367915 #7 Dec 17 2023 11:23:28
%S A367915 1,4,20,52,64,68,84,116,308,320,324,340,372,816,832,836,848,852,880,
%T A367915 884,1104,1108,1136,1360,1364,1392,1396,1904,1908,2868,2884,2900,2932,
%U A367915 3152,3184,3188,3412,3424,3440,3444,3952,3956,5188,5204,5216,5220,5236,5476
%N A367915 Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).
%C A367915 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
%e A367915 The terms together with the corresponding set-systems begin:
%e A367915      1: {{1}}
%e A367915      4: {{1,2}}
%e A367915     20: {{1,2},{1,3}}
%e A367915     52: {{1,2},{1,3},{2,3}}
%e A367915     64: {{1,2,3}}
%e A367915     68: {{1,2},{1,2,3}}
%e A367915     84: {{1,2},{1,3},{1,2,3}}
%e A367915    116: {{1,2},{1,3},{2,3},{1,2,3}}
%e A367915    308: {{1,2},{1,3},{2,3},{1,4}}
%e A367915    320: {{1,2,3},{1,4}}
%e A367915    324: {{1,2},{1,2,3},{1,4}}
%e A367915    340: {{1,2},{1,3},{1,2,3},{1,4}}
%e A367915    372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
%t A367915 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A367915 c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,10000}];
%t A367915 Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]
%Y A367915 A version for multisets and divisors is A355734.
%Y A367915 Sorted positions of first appearances in A367912, for sequences A368109.
%Y A367915 The unsorted version is A367913.
%Y A367915 A048793 lists binary indices, length A000120, sum A029931.
%Y A367915 A058891 counts set-systems, covering A003465, connected A323818.
%Y A367915 A070939 gives length of binary expansion.
%Y A367915 A096111 gives product of binary indices.
%Y A367915 Cf. A072639, A309326, A326031, A326702, A326749, A326753, A355733, A355744, A367905, A367906, A367911, A368112, A368185.
%K A367915 nonn
%O A367915 1,2
%A A367915 _Gus Wiseman_, Dec 16 2023