This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367916 #11 Dec 29 2023 16:41:17 %S A367916 1,2,6,45,1376,161587,64552473,85987037645,386933032425826, %T A367916 6005080379837219319,328011924848834642962619, %U A367916 64153024576968812343635391868,45547297603829979923254392040011994,118654043008142499115765307533395739785599 %N A367916 Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices. %H A367916 Andrew Howroyd, <a href="/A367916/b367916.txt">Table of n, a(n) for n = 0..50</a> %F A367916 Binomial transform of A054780. %e A367916 The a(0) = 1 through a(2) = 6 set-systems: %e A367916 {} {} {} %e A367916 {{1}} {{1}} %e A367916 {{2}} %e A367916 {{1},{2}} %e A367916 {{1},{1,2}} %e A367916 {{2},{1,2}} %t A367916 Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}] %o A367916 (PARI) \\ Here b(n) is A054780(n). %o A367916 b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n)) %o A367916 a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ _Andrew Howroyd_, Dec 29 2023 %Y A367916 The covering case is A054780. %Y A367916 For graphs we have A367862, covering A367863, unlabeled A006649. %Y A367916 These set-systems have ranks A367917. %Y A367916 A000372 counts antichains, covering A006126, nonempty A014466. %Y A367916 A003465 counts set-systems covering {1..n}, unlabeled A055621. %Y A367916 A058891 counts set-systems, unlabeled A000612. %Y A367916 A059201 counts covering T_0 set-systems. %Y A367916 A136556 counts set-systems on {1..n} with n edges. %Y A367916 Cf. A092918, A102896, A133686, A306445, A323818, A355740, A367770, A367869, A367901, A367902, A367905. %K A367916 nonn %O A367916 0,2 %A A367916 _Gus Wiseman_, Dec 08 2023