A367934 a(n) is the smallest multiple of n that is an exponentially evil number (A262675).
1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Module[{k = e}, While[! EvenQ[DigitCount[k, 2 ,1]], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
s(e) = {my(k = e); while(hammingweight(k)%2, k++); k; }; a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
Formula
Multiplicative with a(p^e) = p^s(e), s(e) = min{k >= e, k is evil}.
a(n) = n * A367932(n).
a(n) >= n, with equality if and only if n is an exponentially evil number (A262675).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = Product_{p prime} f(1/p) = 0.623746285..., where f(x) = (1-x) * (1 + Sum_{k>=1} x^(4*k-s(k))), and s(k) is defined above.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^s(k)) = 1.70170328791367919805... .
Comments