A367951 Fixed point of the morphism 1 -> {1,3}, t -> {t-2,t,t,t+2} (for t > 1), starting from {1}.
1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 7, 5, 7, 7, 9, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7
Offset: 1
Keywords
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, exercise 76, pp. 479 and 800.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..12870 (first 8 iterations).
Programs
-
Mathematica
Nest[Flatten[ReplaceAll[#, {1->{1, 3}, t_/;t>1:>{t-2, t, t, t+2}}]]&, {1}, 5]
-
Python
from itertools import islice def A367951_gen(): # generator of terms a, l = [1], 0 while True: yield from a[l:] c = sum(([1, 3] if d==1 else [d-2,d,d,d+2] for d in a), start=[]) l, a = len(a), c A367951_list = list(islice(A367951_gen(),30)) # Chai Wah Wu, Dec 26 2023
Comments