This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367953 #25 Jun 12 2024 03:13:48 %S A367953 2,2,4,2,2,4,2,4,4,6,2,2,4,2,2,4,2,4,4,6,2,2,4,2,4,4,6,2,4,4,6,4,6,6, %T A367953 8,2,2,4,2,2,4,2,4,4,6,2,2,4,2,2,4,2,4,4,6,2,2,4,2,4,4,6,2,4,4,6,4,6, %U A367953 6,8,2,2,4,2,2,4,2,4,4,6,2,2,4,2,4,4,6,2,4,4 %N A367953 Fixed point of the morphism 2 -> {2,2,4}, t -> {t-2,t,t,t+2} (for t > 2), starting from {2}. %C A367953 The first binomial(2*k+1,k+1) = A001700(k) terms (k >= 0) are the row lengths of the Christmas tree pattern (A367508) of order 2*k+1. See A367951 for the morphism that generates row lengths for even orders. %H A367953 Paolo Xausa, <a href="/A367953/b367953.txt">Table of n, a(n) for n = 1..24310</a> (first 8 iterations). %t A367953 Nest[Flatten[ReplaceAll[#,{2->{2,2,4},t_/;t>2:>{t-2,t,t,t+2}}]]&,{2},5] %o A367953 (Python) %o A367953 from itertools import islice %o A367953 def A367953_gen(): # generator of terms %o A367953 a, l = [2], 0 %o A367953 while True: %o A367953 yield from a[l:] %o A367953 c = sum(([2,2,4] if d==2 else [d-2,d,d,d+2] for d in a), start=[]) %o A367953 l, a = len(a), c %o A367953 A367953_list = list(islice(A367953_gen(),30)) # _Chai Wah Wu_, Dec 26 2023 %Y A367953 Cf. A001700, A363718, A367508, A367951. %K A367953 nonn %O A367953 1,1 %A A367953 _Paolo Xausa_, Dec 05 2023