This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367962 #25 Dec 07 2023 16:44:52 %S A367962 1,1,2,2,4,5,6,12,15,16,24,48,60,64,65,120,240,300,320,325,326,720, %T A367962 1440,1800,1920,1950,1956,1957,5040,10080,12600,13440,13650,13692, %U A367962 13699,13700,40320,80640,100800,107520,109200,109536,109592,109600,109601 %N A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!). %F A367962 T(n, k) = A094587(n, k) * A000522(k). %F A367962 T(n, k) = e * (n! / k!) * Gamma(k + 1, 1). %F A367962 Sum_{k=0..n} T(n, k) * 2^(n - k) = A053482(n). %F A367962 Sum_{k=0..n} T(n, k) * binomial(n, k) = A331689(n). %F A367962 Recurrence: T(n, n) = T(n, n-1) + 1 starting with T(0, 0) = 1. %F A367962 For k <> n: T(n, k) = n * T(n-1, k). %e A367962 [0] 1; %e A367962 [1] 1, 2; %e A367962 [2] 2, 4, 5; %e A367962 [3] 6, 12, 15, 16; %e A367962 [4] 24, 48, 60, 64, 65; %e A367962 [5] 120, 240, 300, 320, 325, 326; %e A367962 [6] 720, 1440, 1800, 1920, 1950, 1956, 1957; %p A367962 T := (n, k) -> add(n!/j!, j = 0..k): %p A367962 seq(seq(T(n, k), k = 0..n), n = 0..9); %t A367962 Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *) %t A367962 Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* _Paolo Xausa_, Dec 07 2023 *) %o A367962 (SageMath) %o A367962 def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1)) %o A367962 for n in range(9): print([T(n, k) for k in range(n + 1)]) %o A367962 (Python) %o A367962 from functools import cache %o A367962 @cache %o A367962 def a_row(n: int) -> list[int]: %o A367962 if n == 0: return [1] %o A367962 row = a_row(n - 1) + [0] %o A367962 for k in range(n): row[k] *= n %o A367962 row[n] = row[n - 1] + 1 %o A367962 return row %Y A367962 Cf. A094587, A000142 (T(n, 0)), A052849 (T(n, 1)), A000522 (T(n, n)), A007526 (T(n,n-1)), A038154 (T(n, n-2)), A355268 (T(n, n/2)), A367963(n) (T(2*n, n)/n!). %Y A367962 Cf. A001339 (row sums), A087208 (alternating row sums), A082030 (accumulated sums), A053482, A331689. %K A367962 nonn,tabl %O A367962 0,3 %A A367962 _Peter Luschny_, Dec 06 2023