This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367969 #21 Dec 16 2023 21:23:38 %S A367969 1,1,1,2,5,11,37,129,431,1921,9544,43844,223512,1407320,8519457, %T A367969 52422985,373424140,2685768084,20354852852,160370778238,1318493838635, %U A367969 11239312718146,98700416575613,916309760098349,8735277842452542,84921152781222758,860903677319960583 %N A367969 Number of partitions of [n] whose block maxima sum to k, where k is chosen so as to maximize this number. %H A367969 Alois P. Heinz, <a href="/A367969/b367969.txt">Table of n, a(n) for n = 0..200</a> %H A367969 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A367969 a(5) = 11 = A367955(5,12) is the largest value in row 5 of A367955 and counts the partitions of [5] having block maxima sum 12: 123|4|5, 124|3|5, 125|3|4, 13|24|5, 13|25|4, 14|23|5, 15|23|4, 14|25|3, 15|24|3, 1|2|34|5, 1|2|35|4. %p A367969 b:= proc(n, m) option remember; `if`(n=0, 1, %p A367969 b(n-1, m)*m + expand(x^n*b(n-1, m+1))) %p A367969 end: %p A367969 a:= n-> max(coeffs(b(n, 0))): %p A367969 seq(a(n), n=0..30); %p A367969 # second Maple program: %p A367969 b:= proc(n, i, t) option remember; `if`(i*(i+1)/2<n, 0, %p A367969 `if`(n=0, t^i, `if`(t=0, 0, t*b(n, i-1, t))+ %p A367969 (t+1)^max(0, 2*i-n-1)*b(n-i, min(n-i, i-1), t+1))) %p A367969 end: %p A367969 a:= n-> max(seq(b(k, n, 0), k=n..n*(n+1)/2)): %p A367969 seq(a(n), n=0..30); %t A367969 b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m]*m + Expand[x^n*b[n-1, m+1]]]; %t A367969 a[n_] := Max[CoefficientList[b[n, 0], x]]; %t A367969 Table[a[n], {n, 0, 30}] %t A367969 (* second program: *) %t A367969 b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]]; %t A367969 a[n_] := If[n == 0, 1, Max[Table[b[k, n, 0], { k, n, n*(n + 1)/2}]]]; %t A367969 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Dec 13 2023, after _Alois P. Heinz_ *) %Y A367969 Row maxima of A367955. %Y A367969 Cf. A365441, A365903. %K A367969 nonn %O A367969 0,4 %A A367969 _Alois P. Heinz_, Dec 06 2023