cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367988 The sum of the divisors of the square root of the largest unitary divisor of n that is a square.

This page as a plain text file.
%I A367988 #10 Apr 20 2025 07:32:35
%S A367988 1,1,1,3,1,1,1,1,4,1,1,3,1,1,1,7,1,4,1,3,1,1,1,1,6,1,1,3,1,1,1,1,1,1,
%T A367988 1,12,1,1,1,1,1,1,1,3,4,1,1,7,8,6,1,3,1,1,1,1,1,1,1,3,1,1,4,15,1,1,1,
%U A367988 3,1,1,1,4,1,1,6,3,1,1,1,7,13,1,1,3,1,1
%N A367988 The sum of the divisors of the square root of the largest unitary divisor of n that is a square.
%H A367988 Amiram Eldar, <a href="/A367988/b367988.txt">Table of n, a(n) for n = 1..10000</a>
%H A367988 Vaclav Kotesovec, <a href="/A367988/a367988.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A367988 Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise.
%F A367988 a(n) = A000203(A071974(n)).
%F A367988 a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
%F A367988 Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)).
%F A367988 From _Vaclav Kotesovec_, Apr 20 2025: (Start)
%F A367988 Let f(s) = Product_{p prime} (1 - 1/((p^s + 1)*p^(2*s - 1))).
%F A367988 Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
%F A367988 Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
%F A367988 f(1) = A065463 = Product_{p prime} (1 - 1/(p*(1+p))) = 0.704442200999165592736603350326637210188586431417098049414226842591097056682...
%F A367988 f'(1) = f(1) * Sum_{p prime} (3*p+2)*log(p)/((p+1)*(p^2+p-1)) = f(1) * 1.167129912223800181472507785468113632129480568043855995406075158923507536957...
%F A367988 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A367988 f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A367988 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, (f[i,1]^(f[i,2]/2 + 1) - 1)/(f[i,1] - 1)));}
%Y A367988 Cf. A000203, A071974, A268335, A351568, A367987.
%Y A367988 Cf. A065463.
%K A367988 nonn,easy,mult
%O A367988 1,4
%A A367988 _Amiram Eldar_, Dec 07 2023