A367989 The sum of square divisors of the largest unitary divisor of n that is a square.
1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, (f[i,1]^(f[i,2] + 2) - 1)/(f[i,1]^2 - 1)));}
Formula
Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) if e is even and 1 otherwise.
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^(5/2)) = 0.69451968056653021193... .