cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367991 The sum of the divisors of the squarefree part of n.

This page as a plain text file.
%I A367991 #13 Jun 03 2025 11:26:08
%S A367991 1,3,4,1,6,12,8,3,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,12,1,42,4,8,
%T A367991 30,72,32,3,48,54,48,1,38,60,56,18,42,96,44,12,6,72,48,4,1,3,72,14,54,
%U A367991 12,72,24,80,90,60,24,62,96,8,1,84,144,68,18,96,144,72
%N A367991 The sum of the divisors of the squarefree part of n.
%C A367991 First differs from A348503 at n = 72 and from A344695 at n = 108.
%C A367991 The sum of the infinitary divisors (A077609) of n that are squarefree (A005117). - _Amiram Eldar_, Jun 03 2025
%H A367991 Amiram Eldar, <a href="/A367991/b367991.txt">Table of n, a(n) for n = 1..10000</a>
%F A367991 Multiplicative with a(p^e) = p + 1 if e is odd and 1 otherwise.
%F A367991 a(n) = A000203(A007913(n)) = A048250(A007913(n)).
%F A367991 a(n) = A048250(n)/A367990(n).
%F A367991 a(n) >= 1, with equality if and only if n is a square (A000290).
%F A367991 a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
%F A367991 Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s).
%F A367991 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4)/zeta(3) = 0.900392677639... .
%t A367991 f[p_, e_] := If[OddQ[e], p + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A367991 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]+1, 1));}
%Y A367991 Cf. A000203, A000290, A005117, A007913, A048250, A077609, A367990.
%Y A367991 Cf. A002117, A013662.
%Y A367991 Cf. A344695, A348503.
%K A367991 nonn,easy,mult
%O A367991 1,2
%A A367991 _Amiram Eldar_, Dec 07 2023