This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368001 #5 Dec 21 2023 15:41:58 %S A368001 1,2,6,6,21,21,28,21,21,2002,77,77,77,1001,77,77,1001,1001,77,91,77, %T A368001 89089,785603,286,286,48594,286,25924899,194194,785603,194194, %U A368001 25924899,286,89089,286,388388,194194,286,51849798,388388,194194,286,286,194194,286,388388,286,286,194194,388388,194194,286,388388,1165164,291291,286 %N A368001 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears as the image of a simple random walk on the square lattice. %C A368001 In a simple random walk on the square lattice, draw a unit square around each visited point. A368000(n)/a(n) is the probability that, when the appropriate number of distinct points have been visited, the drawn squares form a particular one of the fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1). %C A368001 Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1. %H A368001 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A368001 A368000(n)/a(n) = (A367994(n)/A367995(n))/A335573(n+1). %e A368001 As an irregular triangle: %e A368001 1; %e A368001 2; %e A368001 6, 6; %e A368001 21, 21, 28, 21, 21; %e A368001 2002, 77, 77, 77, 1001, 77, 77, 1001, 1001, 77, 91, 77; %e A368001 ... %Y A368001 Cf. A000105, A246521, A335573, A367676, A367765, A367994, A367995, A368000 (numerators), A368003, A368005. %K A368001 nonn,frac,tabf %O A368001 1,2 %A A368001 _Pontus von Brömssen_, Dec 09 2023